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Abstract

The decoy effect (DE), first introduced by Huber et al. (1982), has been robustly documented
across dozens of product categories and choice settings using lab experiments. However, it has
never been verified in a real product market in the literature. In this paper, we empirically test
and quantify the DE in the diamond sales of a leading online jewelry retailer. We develop a
diamond-level proportional hazard framework by jointly modeling market-level decoy–dominant
detection probabilities and the boost in sales upon detection of dominants. Results suggest that
decoy–dominant detection probabilities are low (11%–25%) in the diamond market; however,
upon detection, the DE increases dominant diamonds’ sale hazards significantly (1.8–3.2 times).
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profit impact under various dominance scenarios.
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1 Introduction

The decoy effect (Huber et al., 1982), also called attraction or asymmetric dominance effect, refers

to the phenomenon of consumers having different preferences for existing choice alternatives with

and without dominated (i.e., decoy) options in their choice sets. By design, these decoys are inferior

to some, but not to all, existing choice options. When such decoys exist, all else equal, dominant

options’ choice likelihoods get larger compared to cases when the decoys are not present. Since its

introduction, the decoy effect (DE henceforth) has become one of the most popular and frequently

cited context effects in the consumer behavior literature, and it has been thoroughly examined across

dozens of product categories and choice domains using lab experiments (see, for example, Huber

et al., 1982; Huber and Puto, 1983; Wedell, 1991; Lehmann and Pan, 1994; Royle et al., 1999).

Despite its popularity, the DE’s practical validity has been severely challenged recently by a

series of unsuccessful replication attempts that shed light on the limits and boundaries of the effect.

Frederick et al. (2014) showed that the DE can be observed only in very stylized settings, such as

the presentation of two products with two numerically depicted attributes. Yang and Lynn (2014)

provided additional support to these findings and questioned whether the DE has any practical

significance, or if it is just an experimental artifact. The lack of documentation on the practice of

the DE in product markets was noted by Huber et al. (2014); and this has further put the practical

validity and significance of the DE into question. In this paper, in response to these recent studies,

we provide strong empirical evidence that not only validates the DE in a real product market but

also illustrates its managerial significance through quantifying the substantial profit impact.

Even though it has been almost four decades since the DE was introduced, to the best of our

knowledge, there has been no empirical study that tests and quantifies the DE with field data.

To achieve this, one must consider and resolve a few key challenges. First, a researcher needs to

calibrate decoy–dominant relationships among product alternatives. Since products typically have

horizontal attributes—such as brand, taste, size, and packaging—and consumers have heterogeneous

preferences for them, decoys to some consumers may not be decoys to others. Therefore, in most

product markets, strict decoy–dominant relationships may not exist, let alone permit calibration.

Second, consumers should be able to detect the decoy–dominant relationships. Unlike in lab exper-
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iments where alternatives with only two or three attributes are presented, choice scenarios in real

life are far more complex: in a typical consumer product category, alternatives have a much larger

number of attributes, e.g., brand, size, design, color, weight, packaging, taste, and price, to name

a few. Thus, it is much harder for consumers to fully evaluate the trade-offs and detect existing

decoy–dominant relationships, so that, as noted in Huber et al. (1982), “the effect may be less-

ened,” and the lack of detection becomes one important mitigating factor of the DE (Huber et al.,

2014). For consumers to detect decoy–dominant relationships, the choice decision must be salient

and require enough cognitive processing that consumers’ preferences can be constructed rather than

already revealed (Huber et al., 2014). For example, for trivial decisions, consumers may just make

their choices without paying much attention to the alternatives; consequently, they may not be

able to detect existing decoys/dominants. Similarly, for repeat-purchase products, added decoys

may not impact the choices of consumers who have already developed clear preferences for existing

alternatives. From a technical perspective, Simonson (2014) further called for a systematic study

separating decoy–dominant detection from the DE (i.e., sales boost in dominants upon detection).

Lastly, it is quite possible that decoy pricing strategies, i.e., introducing decoy–dominant relation-

ships by charging higher prices for the same or inferior quality products, may not generate positive

profit impacts for firms, which limits the existence of the decoy pricing practice in the real world.

Due to the above-mentioned challenges, to empirically test and quantify the DE, we need data

from a product category 1) with a reasonably small number of vertical product attributes; 2) that is

important to consumers but not repeatedly purchased; and 3) that has the decoy pricing practice.

The online diamond market is a highly appropriate case for this purpose: diamonds are commodity-

type products with quality clearly defined on a few vertical attributes such as carat, color, cut, and

clarity (4Cs); diamond purchases are important but not repeated lifetime decisions; and, finally, we

frequently observe decoy pricing patterns in the online diamond market.

We use diamond pricing and sales data from a major U.S. online jewelry retailer to empirically

test the DE’s existence, quantify its magnitude, and show its significance for firm profitability. We

validate that a diamond’s value is predominantly determined by its most important vertical at-

tributes, i.e., the 4Cs. Yet we also observe significant price variation in the market for diamonds
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with the same characteristics, and we construct dyadic decoy–dominant relationships among dia-

mond pairs based on their 4Cs and prices for our analysis. Data patterns show that dominants

have significantly larger sale probabilities than diamonds that are neither decoys nor dominants,

while the opposite is true for decoys. The effect for dominants, interestingly, doubles that for de-

coys (29% vs. 14%). Sales share regressions reveal that increasing the proportion of dominants in

the market would extract a dis-proportionally larger sales share from other diamonds. These data

patterns are consistent with the predictions of the DE but could also be explained qualitatively by

alternative mechanisms such as the reference price effect, and consumer search. We develop formal

statistical tests to show that, quantitatively, there are strong statistical supports favoring the DE

over the reference price explanation and that the observed price variation are consistent with the

DE coexisting with consumer search but cannot be explained solely by consumer search.

Given the data providing evidence of the DE, we formally develop a proportional hazard frame-

work in our empirical analysis. Modeling the impact of decoy diamonds on sales of their dominants

requires us to separate the market-level decoy–dominant detection from the sales boost once dia-

monds are detected as dominants. To achieve that, we incorporate two critical components into our

proposed hazard framework: market-level decoy–dominant detection probability and dominant boost

hazard upon dominant detection. Thus, in our setting, upon the dominant detection, the dominant

boost hazard component is used to test the existence and measure the magnitude of the DE.

In the estimation, we use a diamond’s characteristics, daily demand factors, competition from

other similar diamonds, and the observed decoy–dominant structure to control for the differences

in the sale hazards of diamonds. To capture potential consumer heterogeneity in response to decoy

pricing, we divide the diamonds into three price segments (low: $2K–$5K; medium: $5K–$10K;

and high: $10K–$20K) and estimate segment-specific detection probabilities and sale boosts upon

dominant detection. Further, to capture the unobserved heterogeneity and correlations in diamond

sales, we use a diamond-level random effect specification. Results suggest that the market-level

detection probability for a decoy (or dominant) diamond is quite low, ranging from 11% in the high-

price segment to 25% in the low-price segment. The low decoy–dominant detection probabilities

confirm that modeling the detection probabilities explicitly is required to quantify the DE accurately.
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As opposed to low detection probabilities, upon detection, we find that a dominant diamond’s sale

hazard gets 2.7, 1.8, and 3.2 times larger in the low-, medium-, and high-price segments, respectively.

This finding validates the DE in the field in response to recent studies questioning this aspect,

including Frederick et al. (2014) and Yang and Lynn (2014). Next, we quantify the profit impact

of the DE and find that the DE improves the retailer’s gross profit by 14.3%. This finding shows

that the DE is not only real but also highly substantive managerially. Finally, through additional

simulation studies, we show that the profit impact of the DE gets larger as the number of decoys

increases; as the price variation increases; and as the market-level detection probability remains

similar, decreases, and increases in the low-, medium-, and high-price segments, respectively.

To reiterate our contribution, we advance the literature on the DE by empirically separating

the market-level decoy–dominant detection from the DE boost of decoys on dominants. More

importantly, for the first time in the literature, we 1) validate the existence of the DE in a real

market; 2) quantify its magnitude across different segments; and 3) show its substantive profit

impact. This paper thus attenuates the recent concerns (Frederick et al., 2014; Yang and Lynn,

2014) about the practical validity of this classical context effect beyond traditional lab settings.

2 Literature Review

This paper contributes to two streams of literature: the general consumer behavior literature on

context-dependent choices (in particular, the DE) and the empirical consumer choice-modeling

literature in marketing and economics.

Standard rational choice models in economics and marketing are built upon the revealed prefer-

ence assumption, which implicitly assumes two principles: the principle of regularity (Luce, 1977)

and the principle of independence of irrelevant alternatives (IIA) (Luce, 1959). In contrast, con-

sumer behavior researchers adopted the notion of constructed preference (Bettman et al., 1998),

and they extensively documented context effects in consumer choices (Tversky, 1972; Simonson,

1989). The DE (Huber et al., 1982), which is a classic example of such context effects, violates

both regularity and IIA principles. The DE has been examined across dozens of product categories

and choice domains (see, for example, Huber et al., 1982; Huber and Puto, 1983; Wedell, 1991;
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Lehmann and Pan, 1994; Royle et al., 1999). Further, the literature features investigations of cog-

nitive processes and mechanisms moderating the DE and related context effects (see, for example,

Ratneshwar et al., 1987; Heath et al., 1995; Khan et al., 2011; Müller et al., 2014; Guo and Wang,

2016; Morewedge et al., 2018). In this domain, Khan et al. (2011) studied the influence of choice

construal on context effects and found that high construal as opposed to low increases the size of

the DE. Morewedge et al. (2018) demonstrated that when comparisons of alternatives for choice

makers require social comparisons, the context effects get stronger. Guo and Wang (2016) studied

underlying causes of context effects and found that the response time can mediate the compromise

effect, but the context information cannot. Despite an ample amount of research devoted to the

DE, empirical test and quantification of the effect in a real product market has not been achieved

yet. Our paper fills this important gap by validating the DE in the field.

Despite its wide acceptance, the limits and boundaries of the DE have been debated by multiple

studies recently. Frederick et al. (2014) stated that the DE could only be observed in very stylized

lab settings with 2×2 numerical depictions of the products (two products with two attributes, with

a decoy to one product added to the choice set later). Through 38 replication attempts, their study

showed that when the product attributes are depicted with perceptual representations and verbal

descriptions (rather than numerical), the DE weakens, dies, or gives way to the repulsion effect.

Through 91 replication attempts, Yang and Lynn (2014) also showed that replicating the DE is

very difficult with verbal and pictorial depictions of product attributes. With the current research,

we respond to concerns of Frederick et al. (2014) and Yang and Lynn (2014) by providing strong

empirical evidence of the existence of the DE in a real product market.

In response to Frederick et al. (2014) and Yang and Lynn (2014), Simonson (2014) underlined

the importance of recognizing the set formation, i.e., subjects being aware of decoy–dominant re-

lationships, in being able to replicate the DE. He argued that consumers’ choices require them

to make multiple trade-off contrasts simultaneously. As a result, they may not be able to make

their decisions based on existing decoy–dominant configurations, especially if such configurations

are difficult to detect. He thus called for a systematic study on the drivers of decoy–dominant

detection. In addition, Huber et al. (2014) recognized the lack of practice of the DE in today’s
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product markets, noting that it is difficult to observe the DE in a real product market since the

detection of decoys is typically very hard for consumers due to numerous alternatives with many

attributes. With this research, we respond to the call of Simonson (2014) by explicitly modeling

decoy–dominant detection in the studied online diamond market to empirically quantify the DE.

Our study is also closely related to consumer choice models in economics and marketing litera-

ture. Classic multinomial logit and probit models are built upon the revealed preference assumption,

thus they cannot directly account for context effects. A few empirical and analytical methods have

been developed to incorporate the context effects into the choice models. Tversky (1972) formulated

his well-recognized Elimination-By-Aspects (EBA) model to account for the similarity effect. Ka-

makura and Srivastava (1984) modified the standard multinomial probit model to account for the

similarity effect by modifying the error structure through incorporating similarity-based error cor-

relations. Kivetz et al. (2004) proposed a choice model that can account for the compromise effect.

Orhun (2009) developed an analytical choice model to study the decoy and compromise effects under

the loss-aversion assumption. Rooderkerk et al. (2011) proposed an empirical choice model that can

incorporate decoy, compromise, and similarity effects all together. They used choice-based conjoint

data to estimate their proposed model and showed that ignoring context effects significantly biases

the choice model’s predictions. Our paper adopts a different approach by developing a proportional

hazard model that explicitly accounts for the DE using pricing and sales data.

Since the studied online diamond retailer offers a large number of diamonds daily, as discussed

earlier we separate the detection of decoys/dominants and the boost in sales upon dominant de-

tection. Accordingly, our decoy/dominant detection component serves the role of a market-level

consideration model. Due to that, our research is also related to the empirical literature that sep-

arately considers consumers’ consideration sets and choices. Existing studies in that domain use

consumer-level data to model consumers’ consideration and choice decisions together. Some studies

use purchase data only (see, for example, Siddarth et al., 1995; Chiang et al., 1998; Van Nierop

et al., 2010), while others use purchase along with search-related data (see, for example, De los

Santos et al., 2012; Honka, 2014). Unlike those studies, we don’t observe either purchase or search

behaviors at the individual level. Hence, we derive a diamond-level hazard model from individual
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primitives, including consideration sets and choice. Consequently, our hazard specification provides

a framework to separately estimate the market-level decoy/dominant detection from the DE by

solely utilizing the aggregate product pricing and sales data.

In the following sections, we first describe the online diamond market, our dataset, and how we

calibrate the decoy–dominant relationships, then we provide data evidence on the existence of the

DE in this market. We develop our model framework in Section 5, and we present the estimation

results and illustrate the DE’s managerial implications in the subsequent two sections. Finally, we

conclude with a discussion of the current study’s limitations and offer directions for future research.

3 Data

3.1 Online Diamond Market

Several U.S. retailers emerged in the online market for diamonds and jewelry products in the past

two decades. We use panel data from a major retailer in this market. In fiscal year 2015, the retailer

reported net sales of $480 million. According to industry reports, it has around 50% market share

of the U.S. online diamond market, with sales approximately three times greater than its closest

competitor. These figures clearly indicate that the retailer is the leading player in the market.

The retailer sells a variety of jewelry products to end consumers, such as unbranded loose

diamonds, gemstones, engagement and wedding rings,1 bracelets, necklaces, and earrings. Loose

diamonds account for the core part of the retailer’s business in terms of revenue contribution.

According to its annual report, the retailer works with dozens of diamond suppliers worldwide

under an “exclusivity” agreement, which requires suppliers to sell their diamonds only through the

retailer’s online channel, and not through their own or other competing online and offline channels.

For listed diamonds, the identities of the suppliers are not revealed on the retailer’s website so that

consumers cannot differentiate diamonds based on the suppliers. Instead, consumers recognize only

the retailer name as the diamond brand. To operate in a cost-efficient manner, the retailer uses a
1Buying a diamond ring from the retailer requires a consumer to choose his/her loose diamond first and then a

ring setting. Consumers pay the total price, and the diamond ring is then assembled by the retailer. Typically, the
loose diamond accounts for more than 90% of the total price paid by consumers.
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drop-shipping business model, i.e., the retailer, in most cases, does not physically carry inventories of

loose diamonds listed on its website. Instead, it purchases diamonds from corresponding suppliers

when consumers place their orders with the retailer. Unlike traditional brick-and-mortar stores,

where only a limited number of diamonds are available, this drop-shipping model allows the retailer

to list more than a hundred thousand diamonds every day.

In this setting, suppliers list their diamonds on the retailer’s website and establish wholesale

prices. The retailer then adds a fixed percentage markup to the wholesale prices. Per the retailer’s

annual report, the markup is fixed at around 18–20% for all diamonds. Because the retailer chooses a

fixed margin over wholesale prices, the decoy pricing structure ultimately comes from the suppliers.2

Nevertheless, consumers are expected to respond to the decoy–dominant structure regardless of

whether the retailer or the suppliers create it. That being the case, as we demonstrate later, the

dominance structure still affects the retailer’s sales and ultimately its profitability to a large extent.

Since more than a hundred thousand diamonds are listed each day, the retailer provides filtering

and sorting tools that help consumers to search for diamonds. On the website, a consumer can

filter diamonds based on a desired range of diamond characteristics (such as price, carat, clarity,

etc.). The website then returns a list of all the diamonds that fall into the filtering criteria on a

single page in the default ascending price order. This one-page structure requires the consumer to

scroll down to check all diamonds filtered. The web page displays each diamond in a row with its

carat, cut, color, clarity (4Cs henceforth), and price information. The consumer needs to further

click into a diamond’s details page to check other less-significant characteristics such as symmetry

and polish. The website also allows the consumer to sort the diamonds based on any one of the 4Cs

or price. Given abundant diamonds from the retailer, the consumer would still face a long list of

diamonds (hundreds to thousands) even after a few rounds of filtering and sorting. The list typically

includes many decoys and dominants that are not easy to detect without laborious investigation.

In addition, because consumers are presented with a list of diamonds according to their set criteria,

this search process resembles the non-sequential search that is consistent with our derivation of the
2We note that the supplier price variation may exist due to multiple reasons. First, due to consumer search costs,

the observed prices can be the outcome of a mixed-strategy price equilibrium on the supplier side. Second, suppliers
might have different costs, resulting in different pricing functions. Third, suppliers may change prices at different
times. Understanding the source of the price variation is beyond the scope of the current study. Instead, we focus
on quantifying the DE given the observed price variation in our data.
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diamond-level hazard model from individual primitives (see Web Appendix B for the details).

3.2 Data Description

We construct a panel data set of diamond prices and sales from this online retailer. We collect

our daily data from the retailer’s website through a web crawler for the period from February 2011

to September 2011. For each diamond listed during our sample period, we observe the diamond’s

inherent physical characteristics and daily prices until the diamond is sold. In the data, diamond

prices typically change over time: on average, each diamond’s price changes once every 21 days,

conditional upon it being unsold. Figure 1 provides an example of price dynamics among three 1.0-

carat diamonds from the day of introduction in the market till the end of the observation period.

Figure 1: Diamond Price Patterns Over Time

As seen in Figure 1, the diamond prices can go up and down, and each diamond may have a

unique price pattern over time. We infer that a diamond is sold through the retailer’s website on

the last day it is listed as available, based on its unique SKU number.3 On average, it takes about

50 days to sell a diamond.

In our analysis, we focus specifically on round-shaped diamonds with prices ranging between

$2K and $20K. Round-shaped diamonds are the most popular ones among those listed (74%) and
3We believe this is a reasonable approach because, as discussed earlier, the suppliers are under an exclusive channel

agreement with the retailer so that the diamond sale would not have happened through other channels. Accordingly,
until a diamond is sold, its supplier is expected to keep listing the diamond on the retailer’s website. That said, we
acknowledge the sale time of a diamond to be inferred based on its removal day as a limitation of the current research.
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sold (78%).4 Diamonds in different price ranges might be more attractive to different segments

of buyers with various budget levels. To account for the potential heterogeneity in the DE across

consumer segments, we further divide the diamonds into low- ($2K–$5K), medium- ($5K–$10K)

and high-price ($10K–$20K) segments based on their first-day market prices.

Before calibrating the decoy–dominant structure, we first examine what determines diamond

prices. We run a linear regression with (log- of) daily diamond prices as our dependent variable

and the diamonds’ physical characteristics as independent variables to uncover the secret diamond-

pricing formula. To control for potential demand variation across periods, we also add day fixed

effects to the regression. We report the regression results in Table 1. The adjusted R-squared

measure for the model with 4Cs, along with day fixed effects, is as high as 96.67%. Individual

regressions for each day yield adjusted R-squared measures ranging between 94.92% and 96.57%.

The results provide evidence that 4Cs are the predominant attributes in determining diamond prices.

To further check the robustness, we ran several regressions by incorporating other diamond

attributes, such as symmetry and polish, into our regression model. Overall, the R-squared measure

does not improve. Moreover, these additional variables have mostly insignificant estimates that

are notably smaller in magnitude compared to the 4C estimates. For example, the implied price

difference contributed by symmetry and polish turns out to be less than 0.5%. Thus, we have

strong statistical evidence to conclude that 4Cs of a diamond can represent its quality very precisely.

Accordingly, in our analysis, we label each unique 4C combination as a grade.

Characterizing a diamond as a combination of its 4Cs and price is, indeed, quite consistent

with industry reports on diamond valuations and with articles educating consumers on purchasing

diamonds. Even though the variation in diamonds’ physical attributes explains a large portion of the

price variation, we still observe significant within-grade and within-day price variation. Specifically,

in the data, the average of the ratios of price standard deviation to the mean price at each day-

grade combination is 0.1, indicating a sufficiently large within-grade and within-day price variation.

This variation is essential to characterize the dyadic decoy–dominant relationships among every

diamond-pair, as discussed next.
4Diamond shape can be considered as a horizontal attribute. Thus, including only round-shaped diamonds would

not affect our decoy–dominant constructions since no decoy–dominant relationships exist across diamond shapes.
Further, we believe most consumers commit to a particular shape before choosing among other attributes.
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Table 1: Diamond Price Regression Model: ln(price) on 4Cs and day fixed effects

Variable Estimate S.E.

Carat 1.768** 0.0004

Poor 0.000
Good 0.056** 0.0009

Cut Very Good 0.114** 0.0009
Ideal 0.180** 0.0009
Signature Ideal 0.231** 0.0013

J 0.000
I 0.141** 0.0004
H 0.268** 0.0004

Color (Low to High) G 0.361** 0.0003
F 0.455** 0.0003
E 0.503** 0.0004
D 0.583** 0.0004

SI2 0.000
SI1 0.124** 0.0003
VS2 0.274** 0.0003
VS1 0.371** 0.0003

Clarity (Low to High) VVS2 0.455** 0.0003
VVS1 0.544** 0.0003
IF 0.619** 0.0004
FL 0.762** 0.0004

Daily Dummies included

Adj. R-squared 96.67%
Adj. R-squared w/o daily dummies 95.27%
Adj. R-squared w/ daily separate regressions 94.92%–96.57%

Note: Estimates with ∗ and ∗∗ are significant at the 0.10 and 0.05 levels, respectively.

3.3 Dominance Construction

By definition, a diamond B is a decoy to another diamond A when B is inferior to A in at least

one attribute, but has no superior attribute. In our specific setting, we define a diamond as a decoy

under two conditions: 1) In terms of 4Cs, B is inferior in at least one attribute to A and has no

attribute superior to A but has the same or a higher price than A; and 2) B has the same 4Cs as

A but is priced at least 5% higher.5 Under the two decoy definitions, for any two diamonds on a
5Under the strict definition, two same-grade diamonds with different prices must have a dominance relationship.

However, in real purchase situations, consumers may not care much about (or even notice) small price differences.
Thus, we use a conservative approach, defining a dominance relationship only if the price difference between the two is
larger than 5%. This 5% rule helps us avoid the potential problem of defining a false dominance relationship when the
dominated diamond is, indeed, superior in other non-critical attributes such as symmetry and polish. Our regressions
show that the price premium contributed by these non-critical attributes is less than 0.5%. As a robustness check,
we replicate our analysis under the 1% and 10% rules and obtain similar results.
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particular day, we define the relationship between them as follows: A dominates B (A � B), B

dominates A (B � A), and no dominance (A ∼ B).

In our data sample, every pairwise decoy–dominant relationship between all listed diamonds is

constructed for each day.6 For a particular diamond j, for each day t, we create two measures:

number of diamonds that are decoys (NDecoy
jt ), and dominants (NDominant

jt ) to that diamond. The

median number of decoys and dominants that a diamond has is 7 in the data, while the distribution

is right-skewed. Since the number of diamonds varies across different grades significantly, there

exist large variation in the number of decoys/dominants across grades. Hence, we normalize the

two measures by dividing them by the number of diamonds in the grade on the same day, and label

the grade-level percentage measures of decoys and dominants as RDecoyjt and RDominantjt , respectively.

4 Data Evidence of the DE

In this section, we discuss some data patterns and reduced-form analyses that are suggestive of the

DE. We show that important data patterns cannot be solely explained by alternative mechanisms

such as the reference price effect or consumer search without considering the DE.

4.1 Dominance Types and Diamond Sales

Based on the dominance construction, on day t, diamond j can belong to one of the four mutually

exclusive groups: 1) neither decoy nor dominant: RDecoyjt = 0 and RDominantjt = 0; 2) decoy only:

RDecoyjt = 0 and RDominantjt > 0; 3) dominant only: RDecoyjt > 0 and RDominantjt = 0; and 4) both

decoy and dominant: RDecoyjt > 0 and RDominantjt > 0. The middle column of Table 2 shows the

count of diamond-day observations for each diamond type. Due to the significant within-grade price

variation, we observe that a majority of the diamonds fall into the both decoy and dominant type.
6We would like to acknowledge that omitting diamonds from competing retailers may create biases in the estimated

size of the DE if the majority of consumers search and compare diamonds from multiple retailers. Given that the
studied retailer is the dominant player in the market with about 50% market share, we expect such practices to be less
common. Even if consumers search across competitors, it is laborious for them to compare diamonds from multiple
retailers altogether since each retailer provides its search/filtering tools, i.e., pooling diamonds from different retailers
is not trivial. As discussed earlier, even with the focal retailer’s filtering tools, the lists of diamonds consumers face
tend to be very large. In other words, it is very difficult for consumers to detect the decoy–dominant relationships
from a single retailer—a fact also confirmed by our estimated decoy–dominant detection probabilities—let alone
comparing across sites. Finally, each retailer’s brand may be perceived as a horizontal attribute, making decoy–
dominant calibrations invalid across retailers. That being said, if consumer search data across multiple retailers
become available, modeling the DE beyond a single retailer can be an interesting future research direction.
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However, even in the smallest group, i.e., neither decoy nor dominant, we have a sufficient number

of observations (27,077) to allow the identification of our model, as we discuss later.

We summarize the percentage of diamonds sold in the total diamond-day observations across

different diamond types in the last column of Table 2. Each cell is calculated by dividing the number

of diamonds sold in each diamond type by that type’s total diamond-day observations. For example,

there are 404,283 decoy only diamond-day observations, out of which 6,792 were sold, yielding the

average sale probability of 1.68%. Table 2 shows that decoy only diamonds have the lowest average

sale probability (1.68%), while the opposite is true for dominant only diamonds (2.53%). The both

type diamonds have a slightly higher average sale probability than the neither type.

Table 2: Summary Statistics Across Diamond Types
Diamond Type Diamond-Day Observations Daily Percentage Sales

Neither decoy nor dominant 27,077 1.96%
Decoy only 404,283 1.68%
Dominant only 340,456 2.53%
Both decoy and dominant 1,945,009 2.08%
Total 2,716,825 2.07%

In addition, we explore how the overall dominance structure impacts the sales shares of different

diamond types using two linear regressions. We use the daily sales share of decoys (in percentage)

and the sales share of dominants as the dependent variables and include price-segment dummies and

percentage of decoy only and percentage of dominant only diamonds in each segment as independent

variables. Results reported in Table 3 show that the percentage of decoy only diamonds significantly

increases the decoys’ sales share, while the percentage of dominant only diamonds significantly

increases the sales share of dominants but reduces that of decoys.

Table 3: Diamond Sales Share Regression

Variable Decoy Sales Share Dominant Sales Share

Estimate S.E. Estimate S.E.

Intercept 0.023 0.026 −0.048 0.040
Medium Segment(5K–10K) 0.006 0.016 −0.082∗∗ 0.025
High Segment(10K–20K) −0.008 0.021 −0.086∗∗ 0.032
% Decoys 0.899∗∗ 0.198 0.161 0.301
% Dominants −0.312∗∗ 0.155 1.972∗∗ 0.236

Adj. R-squared 0.118 0.117

Note: Estimates with ∗ and ∗∗ are significant at the 0.10 and 0.05 levels, respectively. The average value of
% Decoys and % Dominants are 0.14 and 0.13, respectively.
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Qualitatively, the patterns presented in Tables (2) and (3) could be explained by reference price

effect or consumer search. Dominants are in general more preferred by consumers because their

prices are relatively lower than comparable diamonds, whereas the opposite is the case for decoys

(reference price effect). Beyond the relative price disadvantage, a decoy only diamond may also

be detected as a decoy by a segment of consumers who search extensively, and it would never be

purchased upon detection, leading to a further reduction in the sale probability (consumer search).

Notably, the average sale probability of a decoy is still much larger than zero; thus, it is critical to

control for decoy detection in our analysis. The sales share regression results in Table (3) are also

directionally consistent with consumer search because having relatively more decoy only diamonds

in the market would reduce the chances of consumers discovering these decoys along with their

dominants. In other words, as there is a larger share of decoy only diamonds, the size of the market

segment detecting them as decoys is expected to decrease, leading the sales share of decoys to

increase. Similarly, as the percentage of dominant only diamonds increases, consumers are more

likely to include them in their search process, leading to an increase in the sales share of dominants.

Quantitatively, however, the magnitude of differences in the average sale probabilities across

the diamond types and the magnitude of the regression estimates could be suggestive of additional

effects beyond reference price and consumer search. The average sale probability difference between

a dominant only and a neither type diamond (0.57%) is twice the difference between a neither

type and a decoy only diamond (0.28%). Since buying decoys and dominants can be seen (by

consumers) as monetary losses and gains, respectively, based on the prospect theory (Tversky, 1972),

reference price effect would predict the exact opposite pattern, i.e., the former probability difference

is expected to be smaller than the latter. Consumer search, on the other hand, could explain the

significant reduction in the average sale probability for decoys (due to the segment detecting them

never purchasing them), but it could hardly explain the significant boost in the sales of dominants,

especially when the effect is twice that of decoys. In addition, we would expect the sales share of

dominants to increase proportionally with the increase in the percentage of dominants based on

random consumer search, yet the estimated elasticity is as high as 1.97, significantly larger than

1.0, suggesting that including additional dominant only diamonds would extract a disproportionally

larger sales share from other diamonds. All this evidence suggests that there is a significant boost

effect in the sale probabilities for dominants, which is not completely explained by reference price
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Figure 2: Sale Probability Function According to Different Theories

effect or consumer search, yet is very consistent with the predictions from the DE.

We further develop formal statistical tests to show evidence consistent with the DE instead of

reference price effect and beyond consumer search explanations in the following subsections.

4.2 Decoy Effect vs. Reference Price Effect

The marketing literature has extensively examined the importance of relative price comparisons

in consumers’ purchase decisions (Monroe, 1973). The reference prices could be formed based on

contextual factors such as the distribution of market prices (Biswas and Blair, 1991; Rajendran and

Tellis, 1994), or temporal anchoring stimuli such as a product’s past prices (Lynch Jr et al., 1991;

Rajendran and Tellis, 1994). In our particular context, given that diamonds are not repeat-purchase

products and there are thousands of diamonds available each day, it is more likely that consumers

form reference prices based on contextual factors rather than temporal anchors (Kalyanaram and

Winer, 1995). When consumers use average grade-level price as the reference, the prospect theory

(Kahneman, 1979) predicts that 1) consumers respond positively to dominants (in the monetary

gain domain) and negatively to decoys (in the loss domain); and 2) the response to decoys would

be stronger than to dominants (of the same size) due to loss aversion.

Even though the reference price effect (RPE henceforth) and decoy effect may look similar at

first glance, we would like to emphasize a few notable differences that we illustrate in Figure 2. First,
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the RPE gradually vanishes as the monetary gains or losses approach zero. In other words, the RPE

predicts the sale probability function to be continuous as the price of a diamond moves from the gain

to the loss domain (i.e., around the reference price point). To the contrary, under the decoy effect,

we expect a discrete jump in the sale probability function around the reference point—because,

as a non-decoy diamond turns into a decoy one, a market segment emerges with zero probability

of purchasing it upon detection, resulting in a downward jump in the sale probability function

around the decoy threshold price. The opposite becomes the case as a non-dominant diamond

turns into a dominant one: a market segment with significantly large purchase probability emerges,

and this segment induces the sale probability to jump upward around the dominant threshold

price. Thus, the sale probability function is expected to be discontinuous around the reference price

point with the decoy effect. Further, the magnitude of the discrete jump (around the reference

price) depends on the market-level detection probabilities for decoys; and on both the market-level

detection probabilities and the strength of the DE (i.e., sales boost) for dominants.

Second, the predicted relative effects across the domains (loss to gain/decoy to dominant) are

different under the RPE and the DE. The RPE predicts the slope of the sale probability function to

be steeper for decoys than for dominants. We would argue the opposite is more likely to be the case

under the DE explanation, because further reducing the prices of dominants would not only increase

the size of the consumer segment who detects them as dominants but also elevate the attractiveness

of these dominants (i.e., the sales boost level) upon detection. However, as prices of decoys increase,

it gets easier for consumers to detect them, i.e., the size of the market segment that fails to detect

them decreases. Note that only this shrinking segment would respond to the increasing prices (or

monetary losses) of decoys since the other segment would eliminate them upon detection irrespective

of the loss amount’s size. Therefore, with the DE, the sale probability function is expected to have

a steeper slope in the gain domain, and a flatter slope in the loss domain.

We estimate three diamond-level logistic sales regressions to test whether our data support the

DE theory rather than the RPE. The results of these three specifications are reported in Table 4.

In the regressions, we control for the following variables: a diamond’s 4Cs, daily demand effects

such as weekday and holiday dummies, the Google search indexes for diamond-related keywords,

and the number of diamonds in the same grade. We define the reference price as the average price

of diamonds belonging to the same grade. Central to our test, we include separate intercepts and
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separate price slopes (PGain and PLoss as percentage differences relative to the reference price)

for diamonds in the Gain and Loss domains in the first regression. We replace the definition

of Gain and Loss with Dominant and Decoy, and the relative prices with interactions with the

Dominant and Decoy dummies in the second and third regressions. The difference between the last

two specifications is that the definition of Dominant and Decoy is based on whether a diamond has

any decoys or dominants in specification (I), while in specification (II) we use a stricter definition

of whether a diamond is a decoy only or dominant only type. The regression specifications follow

the tradition in empirical tests of the RPE (Hardie et al., 1993; Bell and Lattin, 2000).

Table 4: Diamond Sales Response Function with Logistic Regressions

Variable Gain/Loss Decoy/Dominant(I) Decoy/Dominant(II)

Estimate S.E. Estimate S.E. Estimate S.E.

Controls included included included
Intercept—Gain −0.028 0.019
Intercept—Loss −0.006 0.019
Intercept—Dominant 0.152∗∗ 0.014 0.140∗∗ 0.018
Intercept—Decoy −0.186∗∗ 0.014 −0.205∗∗ 0.019
Slope—PGain −2.444∗∗ 0.145
Slope—PLoss −1.733∗∗ 0.156
Slope—PGain×Dominant −1.491∗∗ 0.131 −1.831∗∗ 0.192
Slope—PLoss×Decoy −1.059∗∗ 0.137 −0.567∗∗ 0.211

Slope Difference (Loss−Gain) 0.686∗∗ 0.215 0.432∗∗ 0.218 1.264∗∗ 0.292
AIC 525,333 525,016 525,191

Note: Estimates with ∗ and ∗∗ are significant at the 0.10 and 0.05 levels, respectively.

The results show a very consistent pattern with the price coefficient more negative in the

gain/dominant domain than in the loss/decoy domain across the three regressions. The differ-

ences between the slopes (loss minus gain) are all significantly positive at the 0.05 level, as shown in

the table. In addition, intercepts for dominants are significantly positive while those for decoys are

significantly negative in the last two regressions, indicating the existence of a discrete jump around

the reference price point. This is consistent with our earlier discussion about the role of the DE.

Lastly, the models with the DE outperform the RPE-only model based on the AICs. These results

are all robust to alternative model specifications, such as separating the effects across the three price

segments and including quadratic terms for relative prices. Overall, our test results show strong

statistical support favoring the DE over the RPE, as illustrated in Figure 2.
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4.3 Decoy Effect vs. Consumer Search

As Simonson (2014) emphasized, consumers’ detection of decoy–dominant relationships is a precon-

dition for the DE. Given the extremely large number of alternatives in the online diamond market,

consumers rely on search to finalize their consideration sets. Thus, consumer search is an inherent

component in our test for the DE (see our Model section). In this subsection, we develop a formal

statistical test to check whether the data patterns can be solely explained by consumer search, or if

there is evidence of the DE in addition to consumer search. Our test relies on the observed market

price dispersion and sales information. We provide the details of this test in Web Appendix A.

The intuition behind the test is that under pure consumer search without the DE, a supplier sets

prices to maximize the expected profit of each individual diamond, and thus identical diamonds

with different prices are expected to generate the same level of profit for the supplier in equilibrium

(Burdett and Judd, 1983). However, if there is DE along with consumer search, a supplier needs

to consider the price optimization beyond each individual diamond because decoys would serve as

“loss leaders” helping the supplier get higher expected profits from the dominants. Consequently,

one would expect the profit contribution of dominants to be higher than that of decoys.

Under the hypothesis of no DE (i.e., there is only search effect), we can utilize the observed prices

and sales information to recover the cost of each diamond j on day t (cjt) from the corresponding

supply-side pricing optimality conditions. Recovered costs should be approximately the same for

diamonds with identical 4Cs, and exactly the same for the same diamond over time. However, if

there exists DE along with consumer search, because of the positive profit externality from decoys to

dominants, the recovered costs from the optimality conditions will be higher for decoys and lower for

dominants, as compared to their true costs. This essentially leads to a positive correlation between

the diamonds’ recovered costs and their relative price levels. The test of the pure search effect versus

the search effect along with the DE thus becomes the same as testing whether recovered costs are

increasing with relative prices. Accordingly, we conduct two statistical tests: 1) using cross-diamond

price variation (labeled as Test I); and 2) using within-diamond price variation over time (labeled as

Test II). Results (see Table A1 in Web Appendix A) consistently reject the null hypothesis of a pure

consumer search explanation across all three diamond price segments. All the estimated coefficients

of relative price levels (rpjt) are positive and significant, and thus are directionally consistent with
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the hypothesis supporting the existence of the DE together with consumer search in our data.

To sum up, our data analyses yield the following results: 1) A diamond’s sale probability

largely depends on whether it is a decoy and/or a dominant; 2) It is critical to account for decoy-

dominant detection in validating the DE; and 3) There is suggestive evidence of the DE beyond

alternative mechanisms of the RPE and consumer search. Hence, empirical investigation of the

decoy phenomenon requires a deliberately developed model, which we introduce in the next section.

5 Model

We develop a diamond-level proportional hazard model to study daily diamond sales. We control

for the effect of diamond characteristics and market demand and supply factors in a baseline daily

diamond sale hazard component. We further capture the role of the DE on diamond sales with

our dominance hazard component. Separating the DE from other factors that affect diamond sales

is a challenging task since consumer-level search and purchase behaviors are unobserved in our

setting. To achieve the objective, we derive our diamond-level proportional hazard from underlying

consumer primitives including consumer arrival process, search, consideration set formation, and

conditional choice probabilities with the embedded DE. Please see Web Appendix B for the details of

our derivation including how the DE is embedded into consumers’ conditional choice probabilities,

and how the proposed hazard specification is used to quantify the DE at the market level. Following

this derivation, we use the following to denote the hazard that diamond j will be sold on day t:

hj(t) = ψj(Xjt;β) · φj(Djt; γ), (1)

where ψj(·) and φj(·) are the daily diamond sale hazard and the dominance hazard components,

respectively. We next discuss each component with the choice and rationale of the corresponding

variables. We present an overview of the variables in Table 5.

5.1 Daily Diamond Sale Hazard

The daily diamond sale hazard component (ψj(·)) captures the baseline daily diamond sale likeli-

hoods without the DE consideration. In general, a diamond’s daily sale likelihood depends on a

few essential factors. First, since diamond buyers with various budgetary constraints have different
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Table 5: List of Variables Used in Model Estimation
Variable Name Description

Daily Diamond Sale Hazard (Xjt)
Kj Diamond segment Segment dummies, low (2K–5K), medium (5K–10K), high (10K–20K)
Zt Google search indexes Daily Google search trends index of diamond-related keywords

Weekday dummies Dummy variables of weekdays
Holiday dummies Dummy variables for Valentine’s Day and federal holidays

Hj Diamond characteristics Dummy coded cut, color and clarity of diamond j,
log- of carat of diamond j,
indicator of carat 1.0 for diamond j

pjt Diamond price Daily price of diamond j (in 1,000)
Wjt Daily competitiveness Log of number of diamonds of the same grade

Dominance Hazard (Djt)
rpjt Relative price index % price difference between diamond j and its grade-level average
Rjt Percentage decoys Number of diamond j’s decoys / number of diamonds in j’s grade

Percentage dominants Number of diamond j’s dominants / number of diamonds in j’s grade
spjt Price standard deviation Standard deviation of prices in diamond j’s grade on day t

preferences for the 4Cs, diamonds at different price levels and grades are likely to have different

sale likelihoods. Second, the sale likelihood of a diamond is expected to decrease as the number of

similar diamonds listed increases. Third, because consumers may have different purchase intentions

on different days, the sale likelihoods of diamonds may also change over time. For example, con-

sumers may have different purchase likelihoods on different days of a week, or special occasions and

holidays. Accordingly, we model the daily diamond sale hazard ψj(·) as an exponential function

of 1) diamond j’s price segment (dummy coded low-, medium-, or high-price, labeled as Kj); 2)

dummy-coded cut, color, and clarity, log- of carat7 (labeled as Hj); 3) its price (labeled as pjt); 4)

log- of the number of diamonds with the same 4Cs (labeled as Wjt); 5) Google search trends to

capture consumer interests, weekday and holiday dummies (labeled as Zt).

With Xjt = {Kj , Hj , pjt,Wjt, Zt}, and β = {βK , βH , βp, βW , βZ}, we define the daily diamond

sale hazard as,

ψj(Xjt;β) = exp(bj +KjβK +HjβH + pjtβp +WjtβW + ZtβZ). (2)

We use a random effect specification, i.e., exp(bj) ∼ Γ(1, σ2), to allow the intercept term to be

diamond-specific.8 The random coefficient specification helps in capturing unobserved correlations
7Since 1.0-carat diamonds are more preferred in our data, in addition to controlling for carat as a continuous

variable, we use an indicator variable that takes the value of 1 if diamond j’s carat is equal to 1.0.
8We would like to note that modeling the unobserved heterogeneity beyond the intercept term is not possible in

our setting due to lack of consumer-level panel data. That being said, ignoring price response heterogeneity may
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in sale likelihoods among diamonds. This is important in our setting since if there exist demand

shocks affecting two diamonds at the same time, without such specification, the effect of one diamond

on the other one’s demand would likely be inferred with biases. We adopt the Gamma distribution

assumption following Lancaster (1979), where the random effect can be analytically integrated out.

5.2 Dominance Hazard

We capture the DE by our dominance hazard component φj(·). Per our derivation in Web Appendix

B, a diamond’s sale likelihood further depends on 1) the size of the market segment detecting it to

be a decoy/dominant; and 2) the sale boost upon it is detected as a dominant. We separate these

two parts as the market-level decoy–dominant detection and the dominant boost hazard.

5.2.1 Market-Level Decoy–Dominant Detection

The likelihood of detecting decoys and dominants in the diamond market may depend on various

context-related factors. First of all, it should naturally depend on the decoy–dominant structure in

the market. As consumers typically sample diamonds based on their desired grades using the filtering

and sorting tools, a diamond with a larger percentage of decoys/dominants in its grade would

have a higher chance of being included together with its decoys/dominants in the consideration

sets. Second, the relative price of a diamond in its grade matters because a diamond is more

likely to stand out either on the top or the bottom of the returned lists under the default price-

sorting design when its absolute relative price differences get larger. Third, diamond purchases are

unique, first-time experiences for most consumers who have limited knowledge regarding diamond

pricing. Thus, learning about the prices becomes an inherent part of their decision process. A

greater variation in the prices of comparable diamonds indicates more opportunities to save, which

will likely motivate consumers to spend more time on the retailer’s site searching and comparing

alternatives. Consequently, they would be more likely to detect existing decoy–dominant relations.

As such, we expect the grade-level price dispersion to be another moderator of dominance detection.

cause overestimation of the DE’s magnitude if there is selection in the market where more price-sensitive consumers
enter into the market only when the market prices are low (see Bell and Lattin (2000) for the overestimation of the
magnitude of loss aversion in the absence of controlling price response heterogeneity). This type of selection might be
less an issue in our particular setting because a diamond is a one-time purchase product category in which consumers
are less likely to have well-formed reference prices from past experiences. In addition, the average price within each
grade stays almost constant week-over-week, making it less likely for the retailer to attract a substantially different
consumer segment (i.e., more price-sensitive) on a weekly basis.
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Based on the above rationales, we model the market-level decoy–dominant detection part of our

dominance hazard as a function of the following variables: 1) percentages of decoys and dominants

that diamond j has (RDecoyjt and RDominantjt ), 2) the relative price measurement (rpjt), and 3) the

price standard deviation in diamond j’s grade (spjt).

We denote the market-level decoy and dominant detection probabilities as PrDecoyjt (·) and

PrDominantjt (·), respectively. Given Djt = {Kj , R
Decoy
jt , RDominantjt , rpjt, spjt}, we model these two

terms as the following:

PrDominantjt (Djt; γ) = I(NDecoy
jt > 0)

exp(V Dominant
jt )

1 + exp(V Dominant
jt )

PrDecoyjt (Djt; γ) = I(NDominant
jt > 0)

exp(V Decoy
jt )

1 + exp(V Decoy
jt )

, (3)

where I(·) is the indicator function and V Dominant
jt and V Decoy

jt are specified as:

V Dominant
jt = Kjγ

Dominant
0 + γDominant1 ln(RDecoyjt ) + γDominant2 I(rpjt < 0)(−rpjt) + γDominant3 spjt

V Decoy
jt = Kjγ

Decoy
0 + γDecoy1 ln(RDominantjt ) + γDecoy2 I(rpjt > 0)(rpjt) + γDecoy3 spjt

.

(4)

The intercept terms (γDominant0 and γDecoy0 ) are modeled at each of the diamond price segments

since decoy–dominant detection probabilities defined in Equation (3) might differ across various

market segments with different consumer budgetary levels. The other γs capture how the percentage

measures of decoys/dominants, the relative price, and standard deviation of the grade-level prices

would impact the decoy–dominant detection probabilities.

5.2.2 Dominant Boost Hazard

Upon a diamond being detected as a dominant, the size of the boost in its sale likelihood, i.e., the

DE, may also depend on a few important context-related factors. First, all else equal, dominants

with more decoys are likely to become more attractive (DE is also called attraction effect) compared

to diamonds with fewer decoys, especially when consumers engage in multiple comparisons. Second,

based on the prospect theory (Kahneman, 1979), a consumer’s purchase decision depends on whether

the price paid is perceived as fair with respect to her reference price point. Since diamonds are not

repeat-purchase products, a consumer is expected to form her reference price based on the prices
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of available diamonds rather than the past price histories (Mazumdar et al., 2005). Thus, upon

detection of a dominant, we expect its sale likelihood to increase as the size of the price gain

relative to comparable diamonds increases. Lastly, following our discussion on consumer learning

in dominance detection, we expect consumers to spend less time as the variation of the grade-level

prices decreases. Accordingly, we expect that with a smaller price dispersion, consumers become

more likely to settle down with their detected dominants rather than continuing the search for other

diamonds. As such, we expect the sale boost of a detected dominant to be more substantial as the

within-grade price variation decreases. Given these rationales, we include the same set of variables

as in the dominance detection component. We label Djt = {Kj , R
Decoy
jt , RDominantjt , rpjt, spjt}, and

define the dominant boost hazard Qjt as follows:

Qjt(Djt; γ) = exp
[
Kjγ

Boost
0 + γBoost1 ln(RDecoyjt ) + γBoost2 I(rpjt < 0)(−rpjt) + γBoost3 spjt

]
. (5)

Similar to the intercept term of the market-level decoy–dominant detection probabilities, we

model the intercept term (γBoost0 ) at each of the diamond price segments since the dominant boost

sizes might differ across market segments. The other γs capture how the percentage measures of

decoys/dominants, the relative price, and standard deviation of the grade-level prices would impact

the sales boost upon dominant detection.
Given market-level detection probabilities and dominant boost hazard specifications, we opera-

tionalize the dominance hazard as follows:

φj(t|·) =



1 if j is Neither

(1− PrDecoyjt ) if j is Decoy Only

(1− PrDominantjt ) + PrDominantjt Qjt if j is Dominant Only

(1− PrDecoyjt )
[
(1− PrDominantjt ) + PrDominantjt Qjt

]
if j is Both

. (6)

We would like to note that we make an implicit assumption in the derivation of the dominance

hazard in Equation (6). We assume that once a consumer detects a specific diamond to be a

decoy, she would never purchase it, as she can always choose the dominant one. This assumption is

consistent with the existing literature. For example, Huber et al. (1982) verified that fully informed

subjects would seldom make “mistakes” of choosing decoys in lab experiments. We argue that it

is highly unlikely for a consumer to buy a detected decoy diamond given that diamonds are high

ticket item products and the monetary cost of doing so is significant.
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Equation (6) shows how the dominance hazard depends on a diamond’s type: if it is neither

decoy nor dominant, the DE has no impact on the sale hazard of the diamond, i.e., the dominance

hazard is normalized to one. If the diamond is decoy only type, it is considered only by the consumer

segment that fails to detect it as a decoy under our assumption. Further, the DE does not play a

role in the sale hazard of the diamond given no detection, resulting in the overall dominance hazard

being the size of this segment, i.e., φj(·) = 1−PrDecoyjt (·). For a dominant only type diamond, there

exist two market segments: the segment that fails to detect the diamond as a dominant, and the

segment that is able to. The DE does not have any impact on the former segment (i.e., Qjt(·) = 1),

while we expect a boost in sale hazard (i.e., Qjt(·) > 1) for the latter. The overall sale hazard thus

becomes the expression in the third line of Equation (6). Finally, if the diamond is a both decoy

and dominant type, it is considered for purchase only by the consumer segment that fails to detect

it as a decoy, with the size of the segment being 1− PrDecoyjt (·). Similar to the decoy only case, the

remaining consumer segment never purchases it, i.e., Qjt(·) = 0. The segment that fails to detect

the diamond as a decoy can be divided into two sub-segments: the sub-segment that fails to detect

the diamond as a dominant and the one that is able to do so. Similar to the dominant only case,

the former sub-segment with size 1 − PrDominantjt (·) will not be impacted by DE, i.e., Qjt(·) = 1,

while the sale hazard from the other sub-segment will be boosted by Qjt(·) > 1. Combining all the

scenarios, for the dominance hazard, we have the expression in the last line of Equation (6).

5.3 Model Estimation

Based on the model components outlined above, we can further arrange the terms and derive the

following log-hazard representation (see Web Appendix C for details),

lnhj(t) = bj +Xjtβ︸ ︷︷ ︸
daily diamond sale hazard

−I(Decoy) ln(1 + eD
Decoy
jt γDecoy

)︸ ︷︷ ︸
dominance hazard of a decoy

+I(Dominant)
[
ln(1 + eD

Dominant
jt (γDominant+γBoost))− ln(1 + eD

Dominant
jt γDominant

)
]

︸ ︷︷ ︸
dominance hazard of a dominant

,
(7)

where DDecoy
jt = {Kj , lnR

Dominant
jt , I(rpjt > 0)rpjt, spjt} and DDominant

jt = {Kj , lnR
Decoys
jt , I(rpjt <

0)(−rpjt), spjt}. The effects of being a decoy and being a dominant on the sale hazards are clearly

outlined in the last two terms of this representation.
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Denote the total number of days since diamond j (in total J diamonds) is on the market to

the end of our observation period as Tj , and the day diamond j is sold since its introduction as

T sj . Following the derivation in Lancaster (1979) for the random effect hazard model, the total

likelihood we use for estimation becomes the following:

L =
J∏
j=1

{[
I
(
T sj ≤ Tj

) (
Sj(T

s
j − 1)− Sj(T sj )

)]
×
[
I
(
T sj > Tj

)
Sj(T

s
j )
]}
, (8)

where Sj(t) =
[
1 + σ2

∑t
τ=1 h̄j(τ)

]−σ−2

is the survivor function and h̄j(τ) is the mean value of the

hazard hj(τ) where bj = 0. Notice that limσ2→0 Sj(t) =
∏t
τ=1 e

−h̄j(τ), i.e., it reduces to the case

without random effects. We estimate the model by using the maximum likelihood approach.

We now discuss a few properties of our model. First, the unit of our analysis is each diamond,

which is different from classic choice models. Second, in terms of how to model the DE conditional

on dominant detection, we choose to use a scalar function Qjt(·). When Qjt(·) > 1, our specification

becomes consistent with the DE theory, i.e., upon detection, there is a boost in sales for dominant

diamonds. In other words, under our framework, testing the existence of the DE becomes the same

as testing whether Qjt(·) > 1. Details of this test are provided in Web Appendix B. Third, it is

quite possible that consumers are heterogeneous, so we allow our daily diamond sale hazard ψj(·)

and the dominance hazard φj(·) to differ across different diamond price segments.

5.4 Model Identification

Our identification strategy relies on the fact that it takes different numbers of days to sell different

types of diamonds (neither decoy nor dominant, decoy only, dominant only, or both decoy and

dominant); or equivalently, the sale hazards vary across different diamond types. Accordingly, we

use different parts of the data to identify different components of our specification. First, based on

the normalization in the first line of Equation (6), the sale hazard for the neither type equals to the

daily diamond sale hazard. Thus, we use the portion of the data regarding the sales of neither type

diamonds with differentKj , Hj ,Wjt, and Zt inXjt to identify the parameters β in the daily diamond

sale hazard component. Second, conditional on the identification of β, we identify the parameters

related to the detection probabilities and dominant boost hazard. Since decoy diamonds could only

be purchased by the market segment that fails to detect them as decoys (see the second line of
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Equation (6)), we use portion of the data regarding the sales of decoy only diamonds with different

RDominantjt , rpjt, and spjt in Djt to identify the parameters of the market-level decoy detection

probabilities, i.e., γDecoy (also see the second component of Equation (7)). Third, as seen in the third

and fourth lines of Equation (6), it is not possible to separately identify the parameters of the market-

level dominant detection probabilities (γDominant) and of the dominant boost hazard (γBoost) since

PrDominantjt andQjt are always bundled together in the form of (1−PrDominantjt )+PrDominantjt Qjt. To

separately identify γDominant from γBoost, we make the following assumption: γDecoy = γDominant,

i.e., all else equal, the market-level probability of detecting a diamond with n decoys as a dominant

is identical to the probability of detecting a diamond in the same grade with n dominants as a decoy.

Since the decoy–dominant relationships are calibrated at the diamond-pair level, the probability of

discovering one diamond dominating another is the flip side of discovering that one is dominated

by the other. Thus, it is reasonable to assume parameters quantifying the decoy and dominant

detection probabilities in the diamond market to be the same.9

Based on this symmetric market-level detection assumption, and conditional on the dominant

detection parameters (γDominant) being identified, we use portion of the data regarding the sales

of dominant only and both decoy and dominant type diamonds with different Djt to identify the

parameters of the dominant boost hazard, γBoost. In our empirical setting, the diamond prices change

over days and subsequently the decoy–dominant structure also changes daily. This data variation

empowers the identification of our model parameters (β, γDecoy, and γBoost). Finally, variation in

the time it takes to sell diamonds with similar Xjt and Djt enables identification of the unobserved

heterogeneity parameter (i.e., σ2).

In addition, the identification of the parameters relies on our exclusion restrictions. Specifically,

we observe two types of variables in the data–the ones that are directly observable by consumers

(such as diamond physical attributes and daily demand factors, i.e., Xjt), and the ones that require

extensive consumer search and comparisons (i.e., the context-related variables, Djt). The Daily

Diamond Sale Hazard component captures the baseline sale hazard of a diamond that does not

depend on deliberate diamond comparisons. Hence, we exclude context-related variables (Djt)

in the modeling of this component. In contrast, the Dominance Hazard component captures the
9Our data limit us from testing whether they are empirically equal. Web browsing information from individual

consumers would potentially help construct measurements to test this. Due to the stringent data requirement, we
leave this exercise for future research.
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critical impact of potential context effect under study. Accordingly, we exclude the variables that

are directly observable to consumers without extensive search (Xjt).10

Finally, given that the derived log-hazard specification is highly non-linear, a valid concern is

whether various components in the function can be identified accurately. We confirm that our

statistical test of dominance is valid through Monte Carlo simulations (see details in Web Appendix

D). We simulate diamond sales by using the proposed model specification under various detection

and dominant boost levels. Estimation with these simulated datasets yields that we can correctly

recover the assumed parameters with high precision. Further, we show that the dominance hazard

component is not identifiable without the existence of the dominance effect in the simulated data,

assuring that the quantified DE is not an artifact of the specific non-linear functional form.

6 Results

6.1 Main Estimation Results

We report our estimation results in Table 6. Results suggest that the daily diamond sale hazard

increases with the diamond’s carat size. In addition, 1.0-carat diamonds are significantly easier to

sell. As expected, as a diamond’s price increases, its sale hazard decreases. Regarding the cut, color,

and clarity attributes, we observe an inverse U-shape relationship, i.e., the daily diamond sale hazard

is the largest for diamonds with moderate cut, color and clarity levels.11 Estimates of daily demand

proxies suggest that Google search indexes for diamond-related keywords are significant proxies for

the sales. The daily diamond sale hazard increases significantly when the search indexes on the

keywords of “engagement ring” and the studied retailer’s name are high, whereas it decreases when

the search intensity is high on the keywords of “diamond,” “diamond ring,” and the competitor’s

name. The daily diamond sale hazard also differs significantly across weekdays, with Thursday
10It might be possible that some context-related variables such as the relative price and the price variation could

directly affect choice instead of the DE as we operationalize. Similarly, it is possible that diamond physical attributes
could also moderate the extent of the DE. We conduct robustness checks that a) include relative price and price
variation in the baseline component and b) move diamond 4C attributes to the dominance hazard component. Our
main model specification in the paper generally outperforms these alternative specifications based on the AIC. More
importantly, the quantified detection probabilities and DE remain quantitatively similar as compared to our main
model specification. Details are available upon request.

11As previously mentioned, our unit of analysis is each individual diamond; thus the basic sale hazard would be
determined by both consumer demand for and supply-level of diamonds. Therefore, an inverse U-shape relationship
does not imply that given the same price, a consumer does not prefer diamonds with better physical attributes.
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being the best day for diamond sales, while Saturday and Sunday are the worst days. The results

also suggest that diamonds are easier to sell during holidays. Regarding the competition from other

diamonds, we find that, intuitively, as the number of same-grade diamonds increases, the daily sale

hazard decreases. Lastly, the estimated variance of the random effect is reasonably large, i.e., the

standard deviation is around 27% of the intercepts, highlighting the importance of controlling for

unobserved correlations in the sale likelihoods among diamonds.

Table 6: Model Estimates

Variable Estimate S.E.

Daily Diamond Sale Hazard
Low-Price Segment (2K–5K) −3.349** 0.114
Medium-Price Segment (5K–10K) −3.169** 0.121
High-Price Segment (10K–20K) −3.312** 0.131
ln(Carat) 0.462** 0.079
Is 1.0 Carat 0.542** 0.018
Price (in 1000) −0.057** 0.006
Cut: Poor 0.000
Cut: Good 0.325** 0.096
Cut: Very Good 0.835** 0.095
Cut: Ideal 1.227** 0.094
Cut: Signature Ideal 0.431** 0.127
Color: J 0.000
Color: I 0.075** 0.029
Color: H 0.228** 0.030
Color: G 0.248** 0.031
Color: F 0.299** 0.032
Color: E 0.065* 0.035
Color: D 0.046 0.039
Clarity: SI2 0.000
Clarity: SI1 0.166** 0.023
Clarity: VS2 0.310** 0.025
Clarity: VS1 0.248** 0.027
Clarity: VVS2 0.078** 0.031
Clarity: VVS1 −0.112** 0.036
Clarity: IF −0.564** 0.044
Clarity: FL −0.300 0.415
Google Search: “diamond” −0.205* 0.110
Google Search: “diamond ring” −0.527** 0.065
Google Search: “wedding ring” −0.003 0.057
Google Search: “engagement ring” 0.079** 0.031
Google Search: retailer’s name 0.183** 0.020
Google Search: competitor’s name −0.446** 0.064
Weekday: Monday 0.000
Weekday: Tuesday −0.026* 0.014
Weekday: Wednesday −0.053** 0.014
Weekday: Thursday 0.052** 0.014

Continued on next page
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Table 6: Model Estimates

Variable Estimate S.E.

Weekday: Friday −0.186** 0.015
Weekday: Saturday −1.737** 0.026
Weekday: Sunday −1.158** 0.021
Is Holiday 0.033** 0.013
ln(# Diamonds of the Same Grade) −0.026** 0.011
σ2 (Variance of the Random Effect) 0.787** 0.012

Dominance Hazard—Market-Level Detection Probability
Low-Price Segment (2K–5K) −1.341** 0.114
Medium-Price Segment (5K–10K) −1.850** 0.190
High-Price Segment (10K–20K) −2.430** 0.388
ln(RDominant

jt ) 0.241** 0.041

I(rpjt > 0)(rpjt) 1.816** 0.734
spjt 0.265* 0.151

Dominance Hazard—Dominant Boost Hazard
Low-Price Segment (2K–5K) 0.965** 0.090
Medium-Price Segment (5K–10K) 0.552** 0.155
High-Price Segment (10K–20K) 1.072** 0.305

ln(RDecoy
jt ) 0.072** 0.027

I(rpjt < 0)(−rpjt) 1.227** 0.496
spjt 0.087 0.082

Log-likelihood −257,666
AIC 515,432

Note: Estimates with ∗∗ and ∗ are significant at the 0.05 and 0.10 levels, respectively.

We now discuss the estimation results regarding the market-level decoy–dominant detection prob-

abilities and the dominant boost hazard, which are the most critical components of our model for

addressing the paper’s central research questions. First, our results suggest that the base market-

level detection probability of a decoy (or dominant) diamond is the highest for diamonds in the

low-price segment and the lowest in the high-price segment. One potential explanation is that con-

sumers of the low-price ($2K–$5K) segment are usually on tight budgets and are more motivated to

spend extra time searching for better prices, leading to larger consideration sets. As a result, they

are more likely to detect existing decoy–dominant relationships. The positive significant estimate

of (log- of) grade-level percentage of decoys/dominants (0.241) shows that when a larger percent-

age of diamonds are decoys in a diamond’s grade, it gets relatively easier for the market to detect

that diamond as a dominant. The positive significant estimate of the relative price index (1.816)

shows that the further a decoy/dominant diamond is priced from the average grade-level price, the

higher is the probability of decoy/dominant detection in the diamond market. In addition, results
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suggest that as the price variation increases in a grade, the market-level detection probabilities of

decoys/dominants marginally increase. This finding suggests that as the within-grade price varia-

tion gets larger, consumers search more to identify decoys (and dominants). By using our model

estimates, we next calculate the market-level decoy–dominant detection probabilities. Interestingly,

we find that these probabilities are quite low: 0.25 for the low-, 0.17 for the medium-, and 0.11

for the high-price segments. These findings show that our real-life scenario with a large number of

diamonds defined on 4Cs and price with many decoys and dominants greatly contrasts with usual

lab settings, in which participants are almost always aware of the decoy–dominant relationships.

Second, the intercept estimates of our dominant boost hazard component are all positive, con-

firming that, upon dominant detection, the sale hazard would be significantly boosted. This provides

direct and conclusive evidence of the existence of the DE in a real product market. The demand

boost effect is lower for the medium-price segment (0.552) compared to the low- (0.965) and high-

price (1.072) segments. The parameter estimate for the (log- of) percentage of decoys is positive

and significant (0.072), indicating that having more decoys would increase the dominant diamonds’

sale hazards. The relative price measure is also positive and significant (1.227) suggesting that

as a dominant is discounted further away from the grade-level average price, its sale likelihood is

boosted more. The estimate of the grade-level price dispersion turns out to be insignificant. We

next calculate the average dominant boost effect in proportional terms using the estimates. We

find that, conditional on a diamond being detected as a dominant, its sale hazard increases by 2.7

times for the low-, 1.8 times for the medium-, and 3.2 times for the high-price segments, suggesting

that—due to the DE—there is a substantial boost in the sale hazards of dominant diamonds.

In summary, our estimation results show that in general, consumers have a low chance of detect-

ing the decoy–dominant relationships in the online diamond market, especially among diamonds in

the high-price segment. Thus, it is critical to model the decoy–dominant detection process in real

product markets in order to correctly quantify the sales impacts of decoys on dominants. On the

other hand, even though the market-level decoy–dominant detection probabilities are low, once an

alternative is detected as a dominant, its sale hazard increases quite significantly, especially in the

low- and high-price segments. With this finding, we not only provide strong field evidence about

the existence of the DE, but also respond to Frederick et al. (2014) and Yang and Lynn (2014), who

questioned the practical validity and usefulness of the DE.
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6.2 Model Comparison and Robustness

In addition to our main model estimation, we conduct comparisons with two simpler modeling

approaches and check the robustness of the results with three alternative specifications. We show

that one would obtain worse data fits and biased inferences of the DE under these alternative

approaches. We also confirm that the estimates are very robust under alternative specifications

with other ways of heterogeneity control and different specifications of the reference price.

One important modeling contribution of this paper is the separation of the DE from decoy–

dominant detection. To test the importance of this separation, in our first model comparison, we

estimate a benchmark proportional hazard model by including the same set of controls directly in

the baseline hazard. Specifically, the log-hazard specification in Equation (7) becomes the following:

ln(hj(t)) =bj +Xjtβ +DDecoy
jt γDecoy +DDominant

jt γDominant. (9)

The second column of Table 7 (column “No Detection”) reports the estimates of the dominance

variables for decoys (decoy shrinkage hazard) and dominants (dominant boost hazard). This sim-

ple modeling approach is outperformed by our proposed model based on the AIC, suggesting that

explicitly separating the market–level decoy–dominant detection from the dominant boost hazard

better explains data variation. More importantly, the alternative model’s estimates have a com-

pound effect of detection and boost on diamonds’ sale hazards, causing inaccurate inferences in

understanding the magnitude of the DE if one directly uses these estimates. Results suggest that

dominant boost hazards from this benchmark model are much smaller (ranging from 1.1 to 1.4 times)

compared to ones from the proposed model (1.8 to 3.2 times). Thus, not explicitly controlling for

the market-level detection causes a significant under-estimation of the DE’s magnitude.

One potential explanation for the observed sales patterns is heterogeneous competitive effects.

For example, there could exist two diamond segments with different competition intensities where

diamonds in the first segment are minimally affected by competition while those in the second are

highly affected. Further, the likelihood of being in the second segment depends on a diamond’s rel-

ative price in the grade. Accordingly, if a dominant diamond is priced significantly lower than other

similar diamonds, the competitive effect plays a role implying a boost in the diamond’s sale likeli-
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hood, and vice-versa.12 To test this alternative explanation, we use a simple 2-segment latent-class

model with diamond price segment dummies and absolute relative price differences determining the

competitive segment membership, and a competition hazard (conditional on being in the compet-

itive segment) that is modeled by the (log- of) number of competing diamonds in the same grade.

This specification yields a much higher AIC compared to our proposed specification (516,718 vs.

515,432), strongly supporting the DE over the heterogeneous competitive effects explanation.

Table 7: Model Comparisons and Robustness Checks

Variable No Detection Homogeneous Reference Price Fixed Effect

Diamond Random Effects included included included
Day Fixed Effects included
PGain:I(rpjt < 0)rpjt −1.251**(0.209)
PLoss:I(rpjt > 0)rpjt −0.599**(0.222)

Market-Level Detection Probability/Decoy Shrinkage Hazard
Low-Price Segment −0.245**(0.025) −1.548**(0.110) −1.376**(0.120) −1.578**(0.145)
Medium-Price Segment −0.090**(0.029) −2.048**(0.208) −1.993**(0.217) −1.742**(0.156)
High-Price Segment −0.095**(0.037) −3.205**(0.413) −2.388**(0.433) −2.176**(0.265)
ln(RDominant

jt ) −0.044**(0.008) 0.205**(0.047) 0.243**(0.041) 0.293**(0.045)

I(rpjt > 0)(rpjt) −0.621**(0.198) 1.164 (0.836) 0.752 (0.829)
spjt −0.046 (0.029) 0.587**(0.141) 0.261 (0.167) 0.304**(0.140)

Dominant Boost Hazard
Low-Price Segment 0.314**(0.027) 0.720**(0.089) 0.989**(0.092) 1.118**(0.114)
Medium-Price Segment 0.050* (0.029) 0.415**(0.168) 0.493**(0.173) 0.416**(0.130)
High-Price Segment 0.064* (0.033) 1.446**(0.334) 0.941**(0.321) 0.722**(0.202)

ln(RDecoy
jt ) 0.076**(0.007) −0.040 (0.027) 0.078**(0.027) 0.027 (0.030)

I(rpjt < 0)(−rpjt) 1.237**(0.220) 0.910* (0.508) 1.768**(0.560)
spjt 0.088**(0.028) −0.010 (0.085) 0.095 (0.089) 0.107**(0.007)

N. parameters 50 49 50 247
Log-likelihood −257, 679 −262, 156 −257, 669 −254, 071
AIC 515, 458 524, 410 515, 438 508, 636

Note: Numbers reported are mean estimates and standard errors. Estimates with ∗∗ and ∗ are significant at
the 0.05 and 0.10 levels, respectively. Other controls (diamond 4Cs, competition, etc.) are included in
the models but not reported here to save space.

We also conduct a series of robustness checks with alternative model specifications and report

the results in Table 7. The first specification omits the random effect in the hazard specification

(column “Homogeneous”), the second adopts a RPE specification with the relative price variables

entering into the daily diamond sale hazard component instead of our dominance hazard specifi-

cation (column “Reference Price”), and the last specification includes day fixed effects instead of
12We thank the Associate Editor for pointing out this. Due to the aggregate nature of our data, it is not possible

to identify the segment-specific log-hazards and the segment sizes simultaneously. Thus, for identification purposes,
we normalize the hazard for diamonds in the first segment to one, which represents no competitive effect.
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Google search indexes and weekday dummies as the control for demand effects across days (column

“Fixed Effect”). Across these three specifications, we find consistent and robust results: most of the

estimates have the same direction and similar magnitude as in our main model. One notable differ-

ence is that the relative magnitude of the DE is reversed for the low- and high- price segments under

the homogeneous model. We believe our random effect specification captures more unobserved het-

erogeneity across diamonds and thus should be more accurate, with the log-likelihood also much

improved. The change in moving the relative price variables into the diamond daily hazard compo-

nent seems to make little impact on the model estimates. In addition, the estimates again show that

the sales function is more responsive in the gain domain than in the loss domain, consistent with

the findings in our data pattern explorations. Finally, including day fixed effects could improve the

model fit but it comes at the cost of almost 200 additional parameters. Importantly, the coefficient

estimates for the dominance hazard component remain almost the same. Thus, we prefer our main

model specification for being parsimonious.

7 Managerial Significance

We now explore the managerial implications of our study. We first quantify the DE’s overall profit

impact to the retailer using model estimates. We also explore through simulation studies how sen-

sitive the DE’s profit impact is with respect to changes in different aspects of dominance structure.

These exercises shed new light on the DE’s practical significance showing that it is not simply an

experimental artifact.

To quantify the DE’s profit impact, we start with the retailer’s profit for a given diamond j at

time t that can be calculated as:

πjt = Prj(t|·)× (pjt − wjt), (10)

where pjt is the price, and wjt is the wholesale price, which can be easily calculated by subtracting

out the retailer’s mark-up of 18% (provided in retailer’s annual report) from the observed daily retail

prices. Prj(t|·) = 1 − exp(−hj(t|·)) is the discrete-time hazard, or the probability that diamond j

would be sold on day t, conditional on not being sold until that day. The DE’s impact on profit can

be quantified by calculating the differences in the sale probability Prj(t|·) with and without setting
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the dominant boost hazard component Qjt(·) to 1.

We present the results in Table 8. Without the DE, on average, each diamond contributes $22.89

in gross profit each day; whereas with the DE, the contribution becomes $26.16. The DE increases

the retailer’s overall gross profit by 14.3%, or equivalently, the DE contributes a 12.5% share of

the retailer’s gross profit. The profit increase due to the DE is the largest in the low-price segment

(25.4%), whereas the opposite is the case in the medium-price segment (8.6%). Based on the

financial information of the retailer, this percentage increase would translate into an annual profit

increase of $9 million. This result shows that even though decoy–dominant detection probabilities

are low in the online diamond market, the DE still has a substantial profit impact due to the

significant boost in sale likelihoods upon dominance detection. Indeed, this profit impact is what

matters the most from the substantive point of view.

Table 8: The Impact of the DE on Retailer’s Gross Profit
Effect 2K–5K 5K–10K 10K–20K Overall

Avg Daily Profit Per Diamond W/O the DE 8.71 30.17 43.67 22.89
Avg Daily Profit Per Diamond W/ the DE 10.92 32.76 49.72 26.16
% Profit Increase due to the DE 25.37% 8.58% 13.85% 14.29%

We next investigate the sensitivity of the DE’s profit impact to different dominance configura-

tions in the diamond market. In the simulation studies, we implement changes in the dominance

structure within the range of observed data. In the first simulation study, we check how the DE’s

profit impact changes when each existing decoy/dominant diamond has one more decoy and/or

dominant in the market. Results are presented in the top portion of Table 9. We find that, intu-

itively, having one more decoy would increase the DE’s profit impact by 0.37% due to the effect of

decoys in boosting the sales of dominants. Whereas, when one more dominant is added, the DE’s

profit impact decreases by 0.24% because the decoy detection probability would increase leading

to a decrease of sales from the decoys. The DE’s profit impact slightly increases (0.14%) if each

decoy/dominant diamond has one more decoy and one more dominant.

We examine the effect of price dispersion on the DE’s profit impact in the second simulation

study. Specifically, we enlarge or shrink the relative prices of each diamond by a factor. For example,

think about a diamond that is priced at $11,000, with a calculated mean grade price of $10,000. By

preserving the mean price level, we change the price of this diamond to $10,500 (dispersion factor
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Table 9: Percentage Changes in the DE’s Profit Impact as the Dominance Structure Changes
2K–5K 5K–10K 10K–20K Overall

Changing the Number of Decoys/Dominants
Each Diamond Has 1 More Decoy 0.43% 0.25% 0.39% 0.37%
Each Diamond Has 1 More Dominant −0.26% −0.25% −0.17% −0.24%
Each Diamond Has 1 More Decoy and Dominant 0.16% 0.01% 0.22% 0.14%

Changing the Price Variation
Multiplying the Dispersion by 0.5 −0.52% −0.28% −1.08% −0.60%
Multiplying the Dispersion by 0.8 −0.19% −0.10% −0.44% −0.23%
Multiplying the Dispersion by 1.2 0.17% 0.10% 0.46% 0.22%
Multiplying the Dispersion by 1.5 0.37% 0.22% 1.17% 0.53%

Changing the Market-Level Detection Probabilities
Market-level Detection Probability in the Data 0.25 0.17 0.11 0.19
Market-level Detection Probability of 0.05 −3.36% 1.49% −2.51% −1.41%
Market-level Detection Probability of 0.10 −1.71% 0.99% −0.25% 0.01%
Market-level Detection Probability of 0.20 −0.13% −0.78% 2.45% 1.00%
Market-level Detection Probability of 0.30 −0.45% −4.03% 2.98% −0.04%
Market-level Detection Probability of 0.40 −2.28% −7.65% 1.66% −2.40%

0.5), $10,800 (dispersion factor 0.8), $11,200 (dispersion factor 1.2), and $11,500 (dispersion factor

1.5) in our simulation study. The middle portion of Table 9 reports the results of this simulation

study. Results suggest that the DE’s profit impact increases with the increase in price dispersion

(between the dispersion factor of 0.5 and 1.5). Based on our model estimates, an expanded price

dispersion would increase both the detection probabilities of decoys/dominants and the effect of

demand boost on dominants. The profit gains from dominants (due to higher detection and sales

boost) outperform the losses from decoy sales (due to higher detection), leading to an increase in

the retailer’s profit in the studied dispersion range.13

Given that dominance detection is a critical pre-condition for the DE, we evaluate the profit

impact of the DE under different dominance detection levels in our last simulation study. By

changing the intercepts in the detection equation, we set the market-level detection probabilities

at 5%, 10%, 20%, 30%, and 40%. The detection probabilities are between 25% for the low-price

segment and 11% for the high-price segment in the data. Results reported in the bottom portion

of Table 9 suggest that the DE’s profit impact gets larger when the detection probability is lower

in the medium-price segment and higher in the high-price segment, as compared to the current

levels. On the other hand, the DE’s profit impact is highest around the current detection level in
13Additional analyses reveal that as the dispersion levels further increase to a few times, the DE’s profit impact

levels off, and the retailer’s profit start to decrease due to the DE.
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the low-price segment. These patterns are driven by the fact that dominance detection has opposite

impacts on the profits from decoys versus dominants. Thus, the DE’s profit impact varies based on

the detection levels and the magnitude of the DE across the diamond price segments.

In summary, our study offers a framework to guide marketing researchers about how to quantify

decoy–dominant detection probabilities in real product markets with pricing and sales information.

We show that the DE has a substantial impact on the studied retailer’s profitability. Further, we

find that the retailer could potentially gain additional profits from the DE when 1) there are more

decoys in the market, 2) within-grade price variation increases, and 3) dominance detection proba-

bilities stay similar, decrease, and increase in the low-, medium-, and high-price diamond segments,

respectively. Having a better understanding of the profit impact could enable the retailer to more

effectively utilize the DE in its marketing and operations activities. One interesting observation is

that the retailer recently included a new section of comparable alternatives on the details pages of a

selected list of diamonds, in which their decoys/dominants are displayed for some of the diamonds.

This practice could likely change the chances of consumers detecting decoys and dominants.

8 Conclusions

In this research, we empirically validate the DE by using unique panel data from a leading online

jewelry retailer. We estimate a proportional hazard model (derived from consumer primitives) with

embedded market-level decoy–dominant detection probabilities and the sales boost upon dominant

detection (i.e., the DE). We find that, the market-level probability of detecting decoys or dominants

is quite low (11%–25%). However, upon a dominant is detected, its sale hazard increases by 1.8 to

3.2 times. Thus, we empirically validate the existence of the DE in a real product market. Our

model comparisons reveal that not controlling for decoy–dominant detection yields biased inferences

regarding the DE’s magnitude. We show that our estimates are robust under various alternative

specifications. In addition to validating the DE in the field, we contribute to the substantive issue

of measuring the DE’s profit impact, i.e., the DE’s managerial significance. We quantify the profit

impact of the DE using model estimates and find that it improves the retailer’s gross profit by

14.3%. We explore how sensitive this profit impact is with respect to changes in the dominance

structure, and find that the profit impact could potentially increase with more decoys, a larger price
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variation, and changes in the market-level decoy–dominant detection probabilities.

Our study is the first empirical attempt to quantify the widely documented DE in the consumer

behavior literature. It is exciting to apply the well-developed context-dependent choice theory to

real-life data and empirically quantify the managerial implications. Accordingly, we would like to

note that the studied online diamond market is a unique setting to test the DE since diamonds have

vertical attributes, and decoys and dominants are widely observed. That being said, we believe it is

possible to find other market settings that also allow the DE to be tested. For example, it is com-

mon that multiple sellers carry different price stickers when selling identical products with the same

shipping/return policies and warranties in e-commerce platforms such as Amazon where the more

expensive alternatives serve the role of decoys. Similarly, in used-goods platforms such as eBay, it

is often possible to observe products with inferior conditions from low-rating sellers to be more ex-

pensive than some of the better condition ones from top sellers. These decoy alternatives may boost

the sale likelihood of less expensive and/or better condition dominants. Further, to substantiate the

effect of such decoys on their dominants, these retail platforms can make decoy–dominant detection

easier or more difficult by either changing the order of the product listings or recommending the

products of particular sellers. However, such operations may have practical limitations for platform

designers due to creating equality concerns and discouraging the participation of smaller sellers. In

addition to within-product price variation on retail platforms, some producers price their product

bundles the same as their main product to make the bundle more attractive. For example, Dyson

offers the V11 Torque Drive Cord-Free Vacuum with extra Extension Hose at the same price as

the Vacuum itself. Last, as opposed to these strict decoy examples, retailers may position some

products as near decoys. For example, the price difference between iPhone X 512GB and 256GB

is the same as the difference between the 256GB and 64GB, making upgrading to 512GB more

attractive to some consumers. In the future, quantifying the DE across various product categories

might help researchers to better understand the DE’s limits and boundaries.

We believe there are multiple dimensions that can be pursued to extend understanding of the

DE in future research. One direction is to investigate how consumers learn and respond to decoy–

dominant relationships in their search process. We face significant modeling challenges in the current

context given the aggregate nature of our data. Future research could potentially address such issues

when consumer-level search data are available. Another direction is to jointly model demand for and
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supply of diamonds. We are less concerned with the diamond suppliers’ optimal pricing decisions

in our application since our focus is the DE on the demand side. Modeling the suppliers’ pricing

decisions under the DE might be an avenue for future study if such supplier-level information is

observed. A third direction is to consider the DE across multiple retailers since consumers might

search products from different retailers. In our setting, since the retailer captures about 50% of

the market share in the U.S., this issue was not a major concern. It might be worth pursuing in

a different product market when data of multiple retail outlets are available. Finally, as Bell and

Lattin (2000) studied the impact of price response heterogeneity in quantifying loss aversion, it is

worthwhile to investigate the same factor for the DE. We partially achieve this by allowing the

DE to differ across diamond price segments. When consumer-level panel data are available, the

heterogeneity in both price responses and the DE could be better formulated in the future.
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Web Appendices

A A Statistical Test for the Source of the Observed Price Variation

In this web appendix, we develop a statistical test to understand whether the observed price vari-

ations in the data can be solely explained by consumer search, or if they are suggestive of both

consumer search and the DE.

Burdett and Judd (1983) proved that when consumers search for price, even for homogeneous

products, price variations can arise in equilibrium. The intuition is that because of consumer search

cost, consumers may not discover all options; and as a result, high-priced options may be purchased

by some consumers. Further, in the mixed-strategy pricing equilibrium, each observed price point

generates the same expected profit. Hong and Shum (2006) used this idea of mixed-strategy pricing

equilibrium to recover consumer search-cost distribution purely from observed price variations for

textbooks—a typical homogeneous good. We borrow this idea to conduct our statistical test. For

diamonds with identical 4Cs (i.e., the same grade), denoted by the set J , we observe two types

of price variations: 1) across diamonds in the set J on day t, and 2) within the same diamond

(identified by SKU) over time. We use pjt to denote the price of diamond j on day t. We use

Phj(t|pjt) to denote the sale response function conditional on price. Because the retailer has a fixed

margin (1− r = 18%) in our market setting, the wholesale price of suppliers becomes wjt = r× pjt.

We denote the marginal cost for suppliers as cjt.

If there is no DE in the sale response function Phj(t|pjt) (i.e., the observed price variation is

driven solely by consumer search), for a supplier, setting prices either through maximizing the total

expected profit from a set of diamonds or through maximizing the expected profit for each individual

diamond (in the corresponding set) will yield the same set of prices and ultimately the same total

profit. However, when the DE exists along with consumer search, this no longer holds since decoys

boost their dominants’ demand, i.e., decoys bring positive externality to the profitability of their

dominants. Therefore, we predict the expected profit from dominants to be higher than that of

decoys. In other words, if the DE exists together with consumer search, each price point in the

support of the observed price distribution would no longer yield the same expected profit, i.e.,

dominants will have higher expected profits compared to decoys. The supplier’s expected profit
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from diamond j on day t is:

πjt = (r × pjt − cjt)Phj(t|pjt). (A.1)

Under the assumption of no DE, assume that suppliers have priced optimally, in which case, the

following first-order condition should hold: ∂πjt
∂pjt

= 0. Note that this optimality condition holds for

any price observed in the marketplace, because under mixed pricing equilibrium, each price point

generates the same optimal profit. From this optimality condition, we can invert the following

marginal cost:

cjt = r × pjt × (1 +
1

ηjt
), (A.2)

where ηjt = [
∂Phj(t|pjt)

∂pjt
][

pjt
Phj(t|pjt) ] is the price elasticity at price pjt.

However, when there is DE, this relationship is no longer true, because decoys serve as “loss

leaders” and generate less expected profits than their dominants. Consequently, for high-priced

decoys, the recovered costs under the optimality condition without the DE will be higher than the

true costs; while the opposite is true for low-priced dominants. Therefore, using Equation (A.2)

leads us to a relationship where the calculated cost cjt increases with the observed price pjt for

identical diamonds. We use this idea in our proposed statistical tests. In the first test (labeled

as Test I), we assume that the suppliers’ marginal costs of diamonds with identical attributes are

the same, i.e., cjt = c,∀j ∈ J, ∀t. It might be a reasonable assumption in this particular industry,

because diamonds are supplied globally by a few dominant manufacturers. Further, this assumption

was also used by both Burdett and Judd (1983) and Hong and Shum (2006). To conduct our test,

we proceed with the following steps:

1. Use a proportional hazard model to fit the sale response function Phj(t|pjt) with polynomials

of pjt (we use linear, quadratic, and cubic forms), diamond characteristics, and daily demand

controls to control for focal and over-time demand effects.

2. Invert the implied cost ĉjt using Equation (A.2) for each observed price point under our null

hypothesis that observed price variation is driven by consumer search only.

3. Regress ĉjt over the relative price index rpjt = (pjt − pJt)/pJt (pJt is the average price of

diamonds in J on day t) and other control variables such as diamond characteristics, daily
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demand effects, and grade average prices.

If the estimated coefficient for rpjt is insignificant, then the test favors the null hypothesis that

price dispersion could be explained based on consumer search alone; if the coefficient is positive

and significant, we would have the statistical support to reject the null hypothesis, and the results

would be consistent with the price variations being driven by the DE along with consumer search.

In our second test (labeled as Test II), we relax the cost assumption (cjt = c,∀j ∈ J,∀t) from Test

I. Instead, we impose the following assumption: For the same diamond j, the cost for the supplier

would be the same over time, i.e., cjt = c,∀t. In other words, diamonds in the same grade might

have different costs, but this cost is time-invariant. We use the within-diamond over time price

variation to test our hypothesis and follow the same steps as in Test I, except that in Step 3, we

run the regressions using diamond-level (i.e., SKU-level) fixed effects as controls and test whether

the coefficient for rpjt is significant. We repeat Test I and II for each of the three diamond price

segments (low-, medium-, and high-price) and report the results in Table A1. Both tests reject the

null hypothesis (i.e., the price variation arises solely from consumer search) and support the DE

coexisting with consumer search.

Table A1: Test of the Source of the Observed Price Variation

Variable 2K–5K 5K–10K 10K–20K

Test I
Controls 4Cs, daily demand effects, pJt
rpjt 2.172∗∗(0.001) 5.401∗∗(0.002) 12.721∗∗(0.003)
Adj. R-squared 0.987 0.995 0.996

Test II
Controls diamond fixed effects
rpjt 1.178∗∗(0.028) 1.917∗∗(0.052) 1.143∗∗(0.167)
Adj. R-squared 0.943 0.960 0.945

Note: Estimates with ∗∗ and ∗ are significant at the 0.05 and 0.10 levels, respectively. Dependent
variable—estimated cost—is in 1000 dollars. In Test II, we randomly sample 500 diamonds in
each price segment.
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B Derivation of Diamond-Level Sale Hazard from Consumer Primitives

In this web appendix, we derive our diamond-level proportional hazard model (Equation 1 in the

manuscript) from consumer primitives including consumer arrival process, search, consideration set

formation, and conditional choice probabilities. We further discuss 1) how we embed the DE in

consumers’ conditional choice probabilities, and 2) how our specification serves as a test for the DE.

B.1 Individual Primitives and Continuous-Time Diamond Hazard

We assume that potential diamond consumers arrive at random times to the retailer’s website. In

each specific time τ (can be a millisecond), we assume that at most one consumer would be making a

diamond purchase decision. A representative consumer i, arriving at time τi, searches the retailer’s

website to form her consideration set and then decides whether to purchase one of the diamonds

from that set that maximizes her utility or not to purchase any diamonds. In terms of search,

we assume independence across diamonds—that is, the probability that a particular diamond is

included is independent of any other diamonds being included or not.1 We denote the consumer i’s

consideration set as Mi, and the super set containing all the possible consideration sets as M.

We define the conditional choice probability of consumer i choosing a particular diamond j

from her consideration set, given j has not been sold before τi, as si(j|Mi) (to be discussed in the

following subsection in detail). The expected sale probability of diamond j at time τi is thus the

sum of the choice probabilities over all possible consideration sets:

ωj(τi) =
∑
Mi∈M

Pr(Mi)× si(j|Mi). (B.1)

Note that this consumer- and diamond-specific choice probability is equal to the sale hazard of

diamond j at time τi. This is the case because it is the conditional probability that diamond j

will be sold at τi conditional on it not being sold until τi, and the consumer i is the only consumer

deciding whether j would be purchased at this particular time.
1Note that this assumption holds under simultaneous but not sequential search. Researchers have documented

empirical evidence in support of both sequential (Zhang et al., 2017) and simultaneous search in the literature (De los
Santos et al., 2012; Honka and Chintagunta, 2016).
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B.2 Embedding the DE into the Continuous-Time Diamond Hazard

For a specific diamond j, we can classify diamonds into three mutually exclusive and collectively

exhaustive types based on their relationships to j. The set of Coj contains diamonds that are neither

dominants nor decoys to j; the set CDominantj contains all diamonds that are dominating j; and

finally, the set CDecoyj represents the collection of j’s decoys. Denote as Mo
ij the set of diamonds

from Coj that are in consumer i’s consideration set, and similarly MDominant
ij and MDecoy

ij the sets

of diamonds (in i’s consideration set) that are from j’s dominants set (CDominantj ) and decoys set

(CDecoyj ). Denote Mo
j , MDominant

j , and MDecoy
j as the super sets of Mo

ij , M
Dominant
ij and MDecoy

ij ,

respectively. We now can express consumer i’s consideration set Mi as a combination of j, Mo
ij ,

MDominant
ij and MDecoy

ij , and define the choice probability si(j|Mi) accordingly:2

si(j|Mi) =



0, if j /∈Mi

si(j|j ∪Mo
ij), if j ∈Mi & MDominant

ij = ∅ & MDecoy
ij = ∅

0, if j ∈Mi & MDominant
ij 6= ∅

si(j|j ∪Mo
ij ∪M

Decoy
ij ), if j ∈Mi & MDecoy

ij 6= ∅ & MDominant
ij = ∅.

(B.2)

In the above equation, j has a choice probability of zero in the first case simply because it is not

in the consideration set. The choice probability is also zero in the third case, because we assume

that consumers are rational, and once a dominant is included in the choice set, the inferior decoy

diamond j will never be purchased. Also, notice that in the last case, the consumer will only choose

an option from the subset, not from MDecoy
ij , because diamonds in MDecoy

ij are inferior to option

j and a rational consumer would not buy those decoys. In other words, the effective choice set

becomes the same as the second case. If there is no DE, si(j|j ∪Mo
ij) = si(j|j ∪Mo

ij ∪M
Decoy
ij );

however, if there is DE, we would expect the presence of diamonds from MDecoy
ij to increase the

attractiveness and thus the choice probability of diamond j. To capture that demand boost due to

the DE, we denote the relationship between the two conditional choice probabilities as follows.

si(j|j ∪Mo
ij ∪M

Decoy
ij ) = si(j|j ∪Mo

ij)× qi(j,Mo
ij ,M

Decoy
ij ), (B.3)

where qi(j,Mo
ij ,M

Decoy
ij ) is a scalar that affects the choice probability of option j, and is a function

2The functional form of si(j|Mi) could be very general. Since we do not have individual-level data, we do not
specify its functional form here. A natural choice could be the multinomial logit model.
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of dominance relationships in the choice set. Note that qi(j,Mo
ij ,M

Decoy
ij ) = 1 if there is no DE;

qi(j,M
o
ij ,M

Decoy
ij ) > 1 if there is DE. Given Equations (B.2) and (B.3), we next aggregate the choice

probability over the possible consideration sets to derive the continuous-time diamond hazard from

Equation (B.1) as follows:

ωj(τi) =
∑

Mi∈M
Pr(Mi)× si(j|Mi)

=
∑

Mo
ij∈Mo

j

Pr(Mi = j ∪Mo
ij)si(j|j ∪Mo

ij)+

∑
Mo

ij∈Mo
j

∑
MDecoy

ij ∈MDecoy
j

Pr(Mi = j ∪Mo
ij ∪M

Decoy
ij )si(j|j ∪Mo

ij ∪M
Decoy
ij )

=
∑

Mo
ij∈Mo

j

Pr(Mi = j ∪Mo
ij)si(j|j ∪Mo

ij)+

∑
Mo

ij∈Mo
j

∑
MDecoy

ij ∈MDecoy
j

Pr(Mi = j ∪Mo
ij ∪M

Decoy
ij )si(j|j ∪Mo

ij)qi(j,M
o
ij ,M

Decoy
ij )

=Pr(j ∈Mi)Pr(M
Decoy
ij = ∅)Pr(MDominant

ij = ∅)
∑

Mo
ij∈Mo

j

Pr(Mo
ij ∈Mi)si(j|j ∪Mo

ij)+

Pr(j ∈Mi)Pr(M
Dominant
ij = ∅)

∑
Mo

ij∈Mo
j

Pr(Mo
ij ∈Mi)si(j|j ∪Mo

ij)×

∑
MDecoy

ij ∈MDecoy
j ,MDecoy

ij 6=∅

Pr(MDecoy
ij ∈Mi)qi(j,M

o
ij ,M

Decoy
ij )

. (B.4)

In the above derivation, we first use Equation (B.2) (i.e., two non-zero choice probabilities on the

second and fourth lines) to obtain the second line of Equation (B.4). Next, we use Equation (B.3) to

move from the second to the third line of Equation (B.4). We then use the independence assumption

to move from the third to the fourth line of Equation (B.4). Next, we define the following:

si(j|j,Mo
j) =

∑
Mo

ij∈Mo
j

Pr(Mo
ij ∈Mi)si(j|j ∪Mo

ij). (B.5)

Given si(j|j,Mo
j) from Equation (B.5), we then define the following:

qi(j,Mo
j ,M

Decoy
j ) =

∑
Mo

ij∈Mo
j

Pr(Mo
ij ∈Mi)si(j|j ∪Mo

ij)qi(j,M
o
ij ,M

Decoy
j )/si(j|j,Mo

j), (B.6)

where qi(j|Mo
ij ,M

Decoy
j ) =

∑
MDecoy

ij ∈MDecoy
j ,MDecoy

ij 6=∅ Pr(M
Decoy
ij ∈Mi)qi(j,M

o
ij ,M

Decoy
ij )

/Pr(MDecoy
ij 6= ∅). Plugging si(j|j,Mo

j) and qi(j,Mo
j ,M

Decoy
j ) from Equation (B.5) and (B.6) into

(B.4), and rearranging the terms, we can simplify Equation (B.4) as follows:
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ωj(τi) =
∑

Mi∈M
Pr(Mi)× si(j|Mi)

=Pr(j ∈Mi)Pr(M
Decoy
ij = ∅)Pr(MDominant

ij = ∅)si(j|j,Mo
j)+

Pr(j ∈Mi)Pr(M
Decoy
ij 6= ∅)Pr(MDominant

ij = ∅)si(j|j,Mo
j)qi(j,Mo

j ,M
Decoy
j )

=Pr(j ∈Mi)si(j|j,Mo
j)×

Pr(MDominant
ij = ∅)

[
Pr(MDecoy

ij = ∅) + Pr(MDecoy
ij 6= ∅)qi(j,Mo

j ,M
Decoy
j )

]
.

(B.7)

Note that qi(j,Mo
j ,M

Decoy
j ) is the average of qi(j,Mo

j ,M
Decoy
j ) weighted by the probability of

havingMDecoy
ij ; and qi(j|Mo

ij ,M
Decoy
j ) is the average of qi(j|Mo

ij ,M
Decoy
j ) weighted by the probability

of having Mo
ij . Thus, the final qi(j,Mo

ij ,M
Decoy
j ) is the average of all the qi(j|.) weighted by the

probability of all the possible combinations of MDecoy
ij and Mo

ij .

Equation (B.7) tells us that the aggregate sale hazard in the continuous time can be decomposed

to the sum of two components: 1) the probability that no decoy–dominant relationships are included

in the consideration set times the aggregate choice probability over all no dominants–no decoys sets

(i.e., the baseline choice probability); and 2) the probability that a diamond’s decoys but not

dominants are included in the consideration set times the baseline choice probability multiplied

by an additional aggregate term q that depends on the decoy–dominant structure. From the DE

theory, we know that for each specific consideration set, qi(j,Mo
ij ,M

Decoy
j ) ≥ 1 , i.e., it cannot be the

case that adding dominated options to the choice set would reduce the choice share of a dominant.

When this q function aggregates to the market level, it is a weighted average of all the consideration

set-level qs. Therefore, the aggregate qi(j,Mo
ij ,M

Decoy
j ) ≥ 1. As qi(j,Mo

ij ,M
Decoy
j ) ≥ 1 captures

the potential DE at the individual-choice level, testing whether qi(j,Mo
ij ,M

Decoy
j ) ≥ 1 equals testing

whether on average the DE exists in individual choices, i.e., whether Eqi(j,M
o
ij ,M

Decoy
j ) ≥ 1.

B.3 Daily Diamond Hazard

We now derive the aggregate-level sale hazard for diamond j at discrete time, i.e., day t. We assume

nt potential consumers arrive randomly during day t, and each consumer can be represented by

consumer i3. By definition in survival analysis, we know the survival function for diamond j at the

end of day t, thus Sj(t) is defined as:
3We use a representative consumer to simplify the derivation of the functional form specification. Our derivation

can be extended to include heterogeneous consumer segments where the current model components (i.e., dominance
detection and hazard boost) can be interpreted as the weighted average effect from heterogeneous segments.
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Sj(t) = e−Hj(t), (B.8)

where Hj(t) =
∫ t

0 ωj(τi)dτ is the cumulative hazard function.

We use Phj(t) to denote the hazard in the discrete time for diamond j on day t:

Phj(t) =
Sj(t− 1)− Sj(t)

Sj(t− 1)

= 1− e−(Hj(t)−Hj(t−1))

= 1− e−hj(t),

(B.9)

where hj(t) = ntωj(τi), and the corresponding survival function is Sj(t) = Πt
k=1e

−hj(k).

B.4 Functional Form Specification

Based on our derivation of ωj(τi) in Equation (B.7), we now can write hj(t) in Equation (B.9) as
follows:

hj(t) =ntωj(τi)

=ntPr(j ∈Mi)si(j|j,Mo
j)×

Pr(MDominant
ij = ∅)

[
Pr(MDecoy

ij = ∅) + Pr(MDecoy
ij 6= ∅)qi(j,Mo

j ,M
Decoy
j )

]
.

(B.10)

In the above equation, the ntPr(j ∈ Mi)si(j|j,Mo
j) component represents the daily hazard

for diamond j. The second component, Pr(MDominant
ij = ∅)[Pr(MDecoy

ij = ∅) + Pr(MDecoy
ij 6=

∅)qi(j,Mo
j ,M

Decoy
j )], represents the combined effect of the probability of diamond dominance de-

tection4 and the boost in sales upon dominant detection. Therefore, we operationalize the hazard

hj(t) at discrete time in Equation(B.10) as follows:

hj(t) = ψj(·)φj(·). (B.11)

Equation (B.11) is the same as Equation (1) in our manuscript. This completes our derivation

of the diamond-specific sale hazard function based on individual consumer primitives.
4In aggregate, the probability of diamond dominance detection can also be interpreted as the size of the consumer

segment detecting the dominance relationship.
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C Log-Hazard Derivation

Based on our model specifications in Equations (2) and (6), we can derive the log-hazard specification

as:

lnhj(t) =bj +Xjtβ + I(Decoy) ln(1− PrDecoyjt ) + I(Dominant) ln
[
(1− PrDominantjt ) + PrDominantjt Qjt

]
=bj +Xjtβ + I(Decoy) ln

1

1 + eD
Decoy
jt γDecoy

+ I(Dominant) ln

[
1

1 + eD
Dominant
jt γDominant

+
eD

Dominant
jt γDominant

eD
Dominant
jt γBoost

1 + eD
Dominant
jt γDominant

]

= bj +Xjtβ︸ ︷︷ ︸
daily diamond sale hazard

−I(Decoy) ln(1 + eD
Decoy
jt γDecoy

)︸ ︷︷ ︸
dominance hazard of a decoy

+ I(Dominant)
[
ln(1 + eD

Dominant
jt (γDominant+γBoost))− ln(1 + eD

Dominant
jt γDominant

)
]

︸ ︷︷ ︸
dominance hazard of a dominant

,

(C.1)

where DDecoy
jt = {Kj , lnR

Dominant
jt , I(rpjt > 0)rpjt, spjt}, DDominant

jt = {Kj , lnR
Decoys
jt , I(rpjt <

0)(−rpjt), spjt} and I(Decoy) and I(Dominant) are indicators for a diamond with dominants and

decoys, respectively.

D Simulation Studies to Illustrate the Model Identification

In our first simulation study, we use the diamonds observed in our data and simulate their sales

by using the proposed hazard specification (with the DE). Then, we estimate our proposed model

with this simulated sales data. The simulation study yields that we can recover back the assumed

parameters with high accuracy. Please see the first two columns of Table A2 below for the results

of this simulation study. We also conduct additional simulation studies with various detection-

levels and dominant boost-levels and find that we can precisely recover the assumed parameter

values irrespective of the assumed size of the detection and dominant boost levels. Results of these

additional analyses are available upon request.
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Table A2: Results of the Simulation Studies Regarding the Model Identification

With Dominance Hazard Without Dominance Hazard

Variable True Value Estimate No Restriction Restrict Boost

Market-Level Detection Probability
Low-Price Segment −3.000 −3.105**(0.200) −34.758 (na) −12.509 (164.066)
Medium-Price Segment −3.000 −2.995**(0.181) −23.269 (na) −12.290 (21.587)
High-Price Segment −3.000 −3.142**(0.215) −21.235 (na) −9.647 (154.853)
ln(RDominant

jt ) 0.500 0.473**(0.051) 5.172 (na) −0.438 (62.541)

I(rpjt > 0)(rpjt) 2.000 2.489**(0.771) 0.059 (na) −0.011 (24.788)
spjt 0.500 0.528**(0.060) −10.767 (na) −7.451 (53.051)

Dominant Boost Hazard
Low-Price Segment 1.000 1.174**(0.165) 13.419 (na) 0.000
Medium-Price Segment 1.000 1.037**(0.152) −9.239 (na) 0.000
High-Price Segment 1.000 1.150**(0.180) −14.611 (na) 0.000

ln(RDecoy
jt ) 0.300 0.295**(0.034) −0.894 (na) 0.000

I(rpjt < 0)(−rpjt) 1.000 0.799 (0.545) −3.705 (na) 0.000
spjt 0.600 0.591**(0.038) 1.572 (na) 0.000

Note: Numbers reported are mean estimates and standard errors. Estimates with ∗∗ and ∗ are significant at
the 0.05 and 0.10 levels, respectively. As noted above, separately identifying Decoy Dominant Detection
and Dominant Boost components is not possible with no DE in the data. Hence, the standard errors
cannot be calculated in the specification with no restriction due to singular numerical hessian. Other
controls (diamond 4Cs, competition, etc.) are included in the daily diamond sale hazard but not reported
here to save space.

In our second simulation study, we again use the diamonds observed in our data. Unlike the first

simulation study, this time, we simulate the sales of diamonds by using only the Daily Diamond

Sale Hazard component of our hazard specification (i.e., no DE). In other words, while simulating

the sales data, we assume the decoy-dominant detection probabilities of being strictly zero, and the

dominance boost of being one. Then, we estimate our proposed hazard model by using the simulated

data. This second simulation study suggests that, without the DE in the data, it is not possible to

separately identify the detection and dominant boost components because as long as the detection

is equal to zero the dominant boost size can take any value. Consequently, even if we can get the

point estimates using MLE, the hessian matrix is numerically singular, and we can not compute the

standard errors (n.a. in the second column of the following table). The large negative values on the

point estimates of the price-segment dummies also show that the detection probabilities are near zero

(in the exp transformation), indicating that indeed we would not find significantly non-zero detection

probabilities. We further fix the dominant boost component to be one (equivalently parameters are

set to zero in the log transformation) and estimate the detection probability parameters. The last
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column in the following table shows the estimation results. The point estimates are, again, large and

negative, which indicates that we would not find numerically non-zero detection probabilities. The

standard errors are large in this scenario because the estimated parameters can take a large range

of values in the negative domain to make the detection probabilities numerically equal to zero (for

example, intercepts of -10 versus -1000 yield practically identical, i.e., zero detection probabilities).

In conclusion, the simulation studies yield that 1) we can recover the detection- and dominant

boost-levels precisely as long as there exists DE in the data; 2) without the DE in the data, we

cannot identify the dominance boost hazard component of our proposed specification. In other

words, the functional form chosen can not cause one to infer the DE if such DE is not present in

the data (Simulation 2). However, if the DE exists in the data, the proposed model can recover the

size of the effect accurately (Simulation 1).
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