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This paper studies the collaboration of talents in rank-order tournaments. We use a structural matching

model with unobserved transfers among participants to capture the differentiated incentives of participants

behind collaborations, with specific focus on incorporating incomplete information and competition in the

matching game. We estimate our model using data from a leading data science competition platform and

recover the heterogeneous preferences of participants that determine whether and with whom they form

teams. Using model parameters, we conduct policy experiments to investigate how the collaboration efficiency

is affected by the incomplete information and competitive pressure on the platform. Our results provide

implications on how firms could better align individual incentives to foster and improve collaborations.
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1. Introduction

Collaboration is ubiquitous. It plays a critical role in enhancing productivity among academic

researchers. For example, co-authorship among economists has been found to be growing over years,

which helps increase the number of publications for individual economists (e.g., Hollis 2001, Duc-

tor 2015). Collaboration also helps accelerate business innovations and new product development

in various industries. Bamford et al. (2004) documented that more than 5,000 joint ventures, and

many more contractual alliances, have been launched worldwide in the past five years of 2004. Yet

they also found that only about half of the joint ventures could achieve returns greater than the

investment cost. They argued that having incompatible partners is an important reason for the

failures. Collaboration is also an important determinant of employee performance within firms, as
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Conference and the 2017 Marketing Science Conference for their valuable feedbacks.
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numerous industry studies have shown that workplace collaboration is a key factor for a company’s

success.1

There are multiple benefits from collaboration, including the facilitation of the economy of scale,

complementarity of knowledge and skills, and division of labor, that help tackle complicated work

tasks. Other factors may facilitate or impede collaborations. In particular, potential participants

in collaboration may have heterogeneous abilities and skills that are not fully observed by other

participants. Such lack of information can lead to adverse selection and other inefficiencies, as

identified in the economics literature. Another important factor is competition. Because the payoff

for being the first can be much higher than being in other ranks, academic researchers race to

find a breakthrough for scientific problems, firms seek to launch new products earlier than their

competitors, and employees compete to be the best among peer workers. Under such competitive

pressure, the collaboration of other parties may force an individual also to collaborate. When there

are a large number of participants with heterogeneous abilities and skills competing in the market,

whether and with whom to collaborate becomes a very intricate problem.

We develop a structural one-sided matching model in this paper to study how individuals collab-

orate to compete. The model has several unique features. First, participants compete against each

other in the market, and the success of their collaboration effort can reduce the returns of other par-

ticipants in the market. Second, there is a large number of participants with heterogeneous abilities

in the matching game. Their abilities are partially reflected by the imperfect, public information.

Finally, our model allows potential collaborators to negotiate how rewards and costs are shared.

Collaboration will only be successful if all of the involving parties agree on the sharing rule. To ana-

lyze the properties of this model, we focus on the market equilibrium, which is characterized by each

participant’s optimal choice regarding whether to collaborate and with whom to collaborate, under

two constraints. The first constraint is that each individual makes rational inferences on the true

ability of other participants based on the public information and their collaboration decisions, using

a Bayesian updating framework. The second constraint imposes that the sharing of rewards and

costs agreed by collaborators will clear the market. That is, the number of one type of participants,

defined by the public information, who want to match with another type of participants, is equal to

the number of the latter type who want to match with the former. This equilibrium concept is first

developed in the theory paper of Becker (1973) who studied the marriage market. We extended his

model to allow for incomplete information on the ability of other parties, and competition among

collaborations. We prove the existence of such an equilibrium in a large-scale, one-sided matching

game.

1 Source: https://www.smartsheet.com/how-workplace-collaboration-can-change-your-company.



Chan, Chen, Wu: Collaborate to Compete
3

We use this matching model to study how collaborations affect the individual performance and

competition outcomes. We also investigate what is the role of incomplete information and compe-

tition in the formation of collaborations and, based on the results, what policies a firm can use to

enhance the efficiency of collaborations. Given the prevalence of collaborations among firms and

individuals, the answers to those questions are of high economic importance. We apply our model

to a dataset we collect from Kaggle.com, a leading data science competition platform. There are

several reasons why the empirical context is suitable for our study. First, Kaggle connects firms that

provide data and sponsors competitions with participants (i.e.,data scientists) who provide solutions

in order to win competitions. Monetary and non-monetary rewards from competitions are based on

the ranking of the team performance, a format equivalent to rank-order tournaments (Lazear and

Rosen (1981)). Second, each competition typically attracts hundreds or even thousands of partici-

pants. To improve their performance, participants may form teams (i.e.,collaborations) to compete

against the others. Third, there is a fixed policy on how Kaggle points are allocated to each partic-

ipant in collaborations. How to split the monetary reward and how to share the workload, on the

other hand, are negotiated by the participants when forming teams. Finally, as repeated interactions

across competitions are rare (only 9% of all team interactions in data), a participant is unlikely to

have full information regarding the true ability or skills of potential collaborators. Kaggle makes the

information on the “tier” status and Kaggle points accumulated from past competitions of each par-

ticipant publicly available on its website; however, such information is not perfectly aligned with the

true ability. This last feature makes it challenging to incentivize participants to collaborate. Kaggle

makes the information on the “tier” status and Kaggle points accumulated from past competitions of

each participant publicly available on its website; however, these information are not perfectly align

with the true ability. This last feature makes it challenging to incentivize participants to collaborate.

We find from data only about one-fourth of participates collaborated in competitions, even after

Kaggle changed its policy of awarding Kaggle points to encourage collaborations.

Estimating the structural matching model is challenging because of two issues: first, due to the

competition nature the likelihood for an individual to form teams is a function of the likelihoods

that other participants will form teams. Second, how team members split the monetary reward and

workload is unobserved to researchers. Because of these two reasons, the likelihood function cannot

be evaluated analytically. To tackle this problem, we propose a two-level estimation procedure.

Conditional on a given set of parameters at the outer level, we impose the equilibrium constraints

in the inner level. This methodology can be applied to estimate other types of large-scale matching

games when competition or other forms of spillovers exist, sharing-rule is not predetermined, or

imperfect information exists.
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Estimation results show that the tier status of a participant, a piece of publicly available infor-

mation, can reasonably reflect her true ability. However, there is a large variation in ability across

participants who belong to the same tier, suggesting that the information is a noisy signal. Non-

monetary rewards, including Kaggle points and other benefits from forming teams, are highly valued

by participants. We also find that participants in general perform much better by forming teams.

However, for high ability participants the gains from collaborating with teammates with lower abil-

ity are negative, implying the risk of collaborations that is due to the lack of complete information.

Finally, we recover the market clearing sharing rule between participants when the market is at

equilibrium. We find that participants at a lower tier have to pay a positive (monetary and non-

monetary) transfer to teammates at a higher tier. This explains why a significant proportion of high

tier participants are willing to form teams with participants from lower tiers in data.

After recovering the model primitives, we conduct counterfactual analyses to investigate how the

incomplete information and competition affect collaborations and their outcomes, as well as what

policies Kaggle may use to enhance the efficiency of collaborations. In the first counterfactual, we

manipulate the informativeness of the tier status regarding the true ability of individuals. We find

that, in comparison to the case when the tier status is uninformative, improving the informativeness

will increase the maximum performance from all teams, a performance measure that the sponsoring

business for the data science competition care most, and the expected payoff of participants. The

increases in participants’ performance and expected payoffs are critical for Kaggle’s business because,

as a platform, its success heavily relies on the ability of attracting sponsoring businesses and top

talents on both sides.

The second counterfactual studies how the extent of competition affects collaboration outcomes.

Specifically, Kaggle can manipulate the degree of competitiveness by changing how its non-monetary

Kaggle points are allocated to teams at different ranks. Fixing the aggregate number of points in

each competition, the competitive pressure increases when more points are awarded to high-ranked

teams at the expense of teams at lower ranks. When points are equally allocated, there will be

no competition (except for the monetary reward). We manipulate the point allocation function in

the counterfactual, and find that increasing the competitive pressure for Kaggle points will boost

collaboration among participants, as well as improve the best performance of all teams. It also

has positive effect on the payoffs of top participants; however, the effect on the payoff of general

participants is negative.

Combining results from the two counterfactuals, we conclude that, to attract talents and improve

team performances, Kaggle should focus on providing more information about the true ability of

participants. Whether Kaggle should make the point allocation more competitive depends on the

objectives of the platform. If the platform wants to improve the best performance, a high competitive
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pressure for points is preferred. However, if attracting more participation in competitions is the

priority, Kaggle should avoid awarding points to the top few teams only.

The contribution of this paper is two-fold. From the methodology perspective, we develop an

empirical matching model that explicitly accounts for incomplete information and competition.

These two factors have not been taken into account in the traditional matching literature. Our

matching model also allows for unobserved sharing rules between agents, a factor that is not

accounted for by the previous literature of coalition games. We also develop a method for esti-

mating our matching game. The method could be easily applied to other empirical settings where

collaborations are critical for the success in market competition. It can be adopted to study other

markets where incomplete information exists and matching has spillover effects. For substantive

contributions, this paper provides insights on how collaborations affect the individual performance

and competition outcomes, and how information and competition affect the collaboration efficiency.

Our counterfactuals generate implications on what policies firms may use to enhance collaborations.

The rest of the paper is organized as follows. We discuss the related literature in Section 2, then

describe the empirical context and provide some summary statistics in Section 3. Section 4 develops

the matching model. Detailed model specification, identification and the estimation are presented

in Section 5. Estimation results and counterfactual analyses are presented in Section 6. Finally, we

discuss the model limitations and outline future research directions in the conclusion section.

2. Related Literature

Our study is closely related to the large stream of literature on matching. Theoretical works on

matching games have been developed for decades. The “Gale-Shapley” algorithm has been applied to

solve problems for college admissions (Gale and Shapley 1962), dating markets (Becker 1973), and

business and plant locations (Bayus 2013). While most of the works assume complete information

in the matching game, a few recent papers have explored the properties of the matching game when

agents have incomplete information. Liu et al. (2014), for example, study a matching game with

one-sided incomplete information and show that the set of stable outcomes is nonempty and is a

superset for the set of complete information stable outcomes.

Empirical works on matching are rather recent. Fox (2008) proposes using the maximum score

estimator to estimate the matching game. In a later paper (Fox 2010), he discusses the identification

conditions for using observed matching outcomes for model estimation. The maximum score esti-

mator has been applied in several recent studies in different industries (e.g., Fox and Bajari 2013,

Yang et al. 2009, Wu 2015). A few recent papers study the vertical matching between insurance

networks and hospitals using the matching model. Ho and Lee (2017), for example, uses a Nash-in-

Nash framework as the equilibrium concept in the matching game. A similar modeling approach is
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also adopted in Ghili (2018). Our matching model assumes that there is a sharing rule, under which

each party is making the optimal choice in matching and the market is cleared, between collabora-

tors depending on their attributes. This approach is first developed in Becker (1973), and is later

adopted in the empirical work of Choo and Siow (2006) that studies marriage market. These two

papers, as well as other empirical studies mentioned above, do not consider the issue of incomplete

information. In this sense, our paper is close to Chan et al. (2015), who use a matching model to

study how individuals, fully aware of the costs associated with being infected, engage in risky sex

behaviors. Agents in their model have uncertainty regarding the health status of their partners.

They also make the market clearing assumption so that they can estimate the model using the

maximum likelihood estimator with equilibrium constraints. Our model differentiates from theirs

by incorporating competition among collaborations, under which the payoff of one collaboration is

affected by the performance of the others.2

Collaborations are typically modeled as a coalition game (for example, see Pycia 2012, Farrell

and Scotchmer 1988). An agent’s payoff is usually assumed to be determined by the coalition she

belongs to. In a more complex setting, the payoff can be determined by other coalitions, and the

agent thus will react to other agents’ coalition decisions under the competitive pressure (Yi 1997,

Wilson et al. 2010). Our study fits into the framework of a coalition game when externality exists.

We contribute to this stream of literature by relaxing the perfect information assumption and

allowing for unobserved sharing rule for the coalition formation. Our study incorporates externality

by directly modeling the payoff of a coalition as a function of other coalitions.

The empirical context of our paper is aligned with the growing literature on crowdsourcing. Given

the emergence of crowdsourcing platforms in the past decade, researchers have explored various

phenomena in crowdsourcing. Burtch et al. (2013), for example, study the content contribution

of users for a digital journal and test several economic theories using substitution models and

reinforcement models. In another study, Bayus (2013) studies individual ideators’ contribution in

Dell’s IdeaStorm community over time, and finds that past success has a negative effect on the

current contribution. Huang et al. (2014) study the learning process of participants on the same Dell

platform and show that individuals learn quickly about their ability for generating high potential

ideas, but they are relatively slow for learning the cost of implementation. The above research on

crowdsourcing has treated collaborations on platforms as exogeneously given. We contribute to the

2 A few other empirical studies consider either incomplete information or competition. Ackerberg and Botticini (2002),
for example, relax the assumption of perfect information, and estimate the determinants of contracts by explicitly
embedding an endogeneous selection in the matching process. Wilson et al. (2010) extend the matching literature
by incorporating externalities from network effects in faculty’s office choice. Uetake and Watanabe (2017) study firm
entry decisions in the bank industry, allowing for potential spillovers. The modeling approach in these papers is
different from ours.
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literature by studying how participants of Kaggle’s competitions collaborate and how their outcomes

are affected by collaboration.

Finally, the way that Kaggle awards participants Kaggle points and monetary prizes makes the

competitions equivalent to rank-order tournaments (Lazear and Rosen (1981)). This stream of lit-

erature studies how rewards based on ranking could motivate hard work and improve performance.

For example, Eriksson (1999) uses the compensations for executives to test the tournament theory.

Kini and Williams (2012) finds that higher tournament incentives will motivate risk-taking behav-

iors for senior managers in order to increase the chance of being promoted. Lazear (1989) shows that

while tournaments motivate worker effort, excessive competition for rewards may reduce collabora-

tions. Our study differs from these previous works by investigating how collaborations can enhance

the team performance, and thus how the competitive environment in rank-order tournaments can

increase the incentive to collaborate.

3. Background and Data

In this section, we discuss the empirical context, describe the data, and explore some data patterns

that are related to our empirical matching model.

3.1. Empirical Setting

Our empirical setting is Kaggle.com, a leading global crowdsourcing platform for predictive modeling

and analytics competitions. Founded in 2010, Kaggle bridges the connection between the demand

for and supply of data science talents. On the demand side, firms provide data for the business

problems they want to solve or opportunities they want to explore. On the supply side, data sci-

entists, researchers and students who have the talents and tools to solve the problems crave for

the opportunity to prove their ability and earn rewards. Kaggle connects the two sides by holding

sponsored crowdsourcing competitions in which participants compete to provide the best solutions

and win awards set up by sponsoring businesses. By the end of 2017, Kaggle has hosted 248 compe-

titions, attracted more than 60 thousand participants, and awarded over 9 million US dollars. These

competitions have resulted in significant scientific advancements including furthering the state of

art in HIV research, improving predictive technologies and algorithms, and uplifting operational

efficiency in business applications.3

For most competitions, the sponsoring business first specifies the winning rules and monetary

prizes. Depending on the business background, type of analytics required and the amount of the

prize, each competition attracts a distinct set of participants. They can compete alone or form

3 Source: https://techcrunch.com/2017/06/22/the-kaggle-data-science-community-is-competing-to-improve-airport-
security-with-ai/ and https://www.kaggle.com/c/passenger-screening-algorithm-challenge.
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teams. It is very common that thousands of participants register in the same competition, making

it very difficult to win the prize.

To incentivize participation, Kaggle awards Kaggle points to each participant based on her final

ranking in the competition. The typical policy is to allocate most points to a few best performers, and

the awarded points decline as a convex function with lower ranks. This point allocation creates an

additional competitive pressure among participants, on the top of the competition for the monetary

prize. Kaggle also uses a tier system to classify individuals, under which participants who have

the highest Kaggle points accumulated from past competitions are awarded the Master status,

followed by Expert and then Contributor tiers. Participants who compete for the first time are

recognized as Novices.4 The tier status and points can be an important part of the non-monetary

reward for participants. As Kaggle has gradually established its reputation in the data science

community, showing the tier status or points is a useful way to strengthen the resume of data

scientists. During an interview with Wired Magazine, Gilberto Titericz, a top Kaggle player, claimed

that job opportunities that flow from a good Kaggle ranking are generally more bankable than

money prizes.5

Collaborations can be important for participants to achieve good performance and win competi-

tions. To make sure that winners from competitions can provide high-quality solutions to sponsoring

businesses, Kaggle designs rules for participants that not only allow, but also encourage participants

to collaborate. Indeed, the formal unit of participation is a “team”, where a participant competing

alone is just a “single-member team.” Collaborations on Kaggle are formed in a decentralized way,

in which participants decide whether to form teams and with whom to form team by themselves,

usually through an invitation-and-acceptance/rejection procedure. Mutual agreements among team

members are needed but, once the team is formed, it is not allowed to change throughout the

competition.

Despite of the potential benefits of collaboration, there are many factors that may deter team

formation. The first factor is the lack of information about other participants. Kaggle tries to solve

this problem by making the tier status of each participant publicly available on the website. The

information nevertheless is an imperfect measure. For example, the abilities for new participants

(who are all Novices) are not well distinguished, and participants who have participated in more

competitions are more likely to belong to a high tier. Furthermore, the sharing rule for the monetary

and non-monetary rewards may discourage high ability participants to collaborate with others whom

4 For a more detailed description on the points allocations and tier progressions, see an article at:
https://www.kaggle.com/progression. Some of the terminologies has changed in 2016. We use the ones before the
change in this paper.
5 Source: https://www.wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in/. Accessed
January 20, 2018.
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they are not familiar with. The monetary prize if a team wins has to be split between members in

a way that is negotiated in advance. Kaggle points will also be allocated based on the number of

participants in a team (more details are below). Finally, free riding and moral hazard can create

inefficiencies and conflicts among team members. Therefore, the expected payoff for each participant

in a team may not be higher than that from competing alone.

To encourage collaboration, Kaggle changed the point allocation policy in 2016. Before the change,

the points a member could get is equal to what her team wins divided by the team size. The new

policy divides the points of the team by the square root of the team size.6 Simultaneously, Kaggle

also reduced the number of points a team can win at each rank. Single-member teams therefore can

win fewer points under the new policy. This could increase the incentive for participants to form

teams.

3.2. Data and Summary Statistics

We use the Meta Kaggle data provided by Kaggle.com7 for the empirical application. The dataset

includes information on competitions, participants, teams and the final score, ranking, and rewards

for each team. We observe 315 competitions that cover a time span of 7 years from 2010 to 2016. We

exclude competitions that do not award Kaggle points, which are designed to let participants “have

fun” and familiarize with the competition. We also exclude competitions that have less than 100

participants. These are mostly competitions at the very early stage of Kaggle when it launched in

2010. Since the value of Kaggle points were not well recognized by the data scientist community, the

incentives for participants could be very different from the competitions in later stage when Kaggle

points are highly valued. After excluding these two types of competitions, we are left with 102

competitions and 32,362 unique participants in the model estimation. In the sample 87% are single-

member teams. For teams with multiple members, 63% have two members. The dimensionality of

team options will become much higher and the matching problem too complex if we model team

formation with more than two members. For the simplicity of analysis, we assume that, for teams

with more than two members, the formation is driven by multiple, separate one-on-one matching

between the member with the highest cumulative Kaggle points and each of the other members.

The rationale for this assumption is that the presence of the member with the highest tier status is

the most important determinant for the team performance, which we will show later.

Table 3.2 provides the summary statistics on several key variables at the competition level. The

total monetary prizes in our data is US $25,000 averaged across competitions, with the highest at

US $500,000. A competition attracts 643 participants on average. In general, competitions with

higher monetary rewards attract more participants.

6 Source: http://blog.kaggle.com/2015/05/13/improved-kaggle-rankings.
7 Source: https://www.kaggle.com/kaggle/meta-kaggle.
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Table 1 Monetary Rewards And Participants Across Competitions

Rewards Quartile Rewards (USD) Participants

min mean max min mean max

Q1 0 360 950 27 226 779
Q2 1000 4675 9000 26 463 1883
Q3 10000 11283 17500 32 627 4151
Q4 20000 67621 500000 97 1374 6260

Table 2 shows how participants of the 4 Kaggle tiers differ in their Kaggle points. We report the

average points per competition that a participant joined before, and the total accumulative points.

Novices have not participated in any competition and thus have 0 points. As a participant’s tier

moves up, both dimensions of Kaggle points also increase. The last column of the table shows that

more than 50% of participants are Novices. Masters are an elite group, as only 10% of participants

belong to this tier.

Table 2 Summary Statistics of Participants’ Tier and Kaggle Points

Player Tier Mean Average Points per Competition Mean Total Points No. of Participants

Novice 0.00 0.00 34929
Contributor 845 1425 10924
Expert 1702 5876 6679
Master 4371 22179 5721

Note: Participants may join multiple competitions, so the total number of participants in this
table is larger than 31,246(unique participants across competitions).

Table 3 reports how participants with different tiers choose to form teams. Two clear patterns

arise: first, Novices and Masters are more likely to form teams, probably because of different reasons.

Novices form teams in order to learn and prove her ability by collaborating with others. Masters,

on the other hand, are well recognized in the community for their high abilities, and thus they are

highly demanded for collaborations. Second, there is a pattern of sorting, as participants tend to

match with other participants from the same tier. This is especially true for both Novice and Master

tiers. The proportion of teams formed with Novices is large across tiers because Novices are the

majority in most competitions.

We now look at how collaborations impact the performance. In almost all of the competitions,

performance is measured by the predictive accuracy on hold-out samples, but the criteria used for

calculating the accuracy differs from competition to competition.8 Since the measure is unique for

8 Some of the most commonly used evaluation algorithms are Root Mean Squared Errors (RMSE), Root Mean Squared
Errors (RMSE), Root Mean Squared Logarithmic Error (RMSLE), Area Under Receiver Operating Characteristic
Curve (AUC), and Log Loss.
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Table 3 Summary Statistics of Participants’ Team Choices

Tier/Choice Single
Team

Novice Contributor Expert Master

Novice 54% 39.7% 3.2% 1.4% 1.6%
Contributor 78.0% 10.8% 8.3% 1.9% 0.9%
Expert 75.6% 7.5% 2.9% 9.7% 4.0%
Master 53.2% 8.7% 1.4% 4.1% 32.5%

Note: Rows represent participant tier and columns represent participants’ choices. Numbers represent per-
centage of choices for each option.

each competition, we create a standardized score from the original performance measure in each

competition. We first calculate the mean and standard deviation of the original performance measure

for single-member teams. We deduct the original performance of each team by the calculated mean

and then divide it by the calculated standard deviation. The idea of the standardization is that

the mean and standard deviation of single-member teams capture the benchmark difficulty and

variation in performance using the original measure. After the standardization, the scores of all

teams could be compared across competitions.

The average and the standard deviation of the standardized score across different types of teams

are reported in Table 4. Several interesting patterns arise. First, conditional on a participant’s

tier, her performance when forming team is in general better than when she competes alone. Since

the performance provides value for sponsoring businesses, this result suggests that Kaggle should

encourage more collaborations, a policy it seems to have long adopted. A natural question one may

ask is, if this is the case, why there are still a large percentage of participants who stay single, as

shown in first column of Table 3? One of the major reasons could be that, since participants have

to split the monetary prize and Kaggle points and face the potential conflicts due to moral hazard

and free-riding, the expected payoff of each member when forming team could be lower than if she

competes alone. Another data pattern is that teaming with a participant with a higher tier status will

perform better than teaming with another with a lower status. Specifically, the average performance

is the highest when teaming with a Master. Finally, there is a large variation in performances within

each type of single- or multiple-member teams, suggesting that there is a large differentiation in

the ability of participants even belong to the same tier. This is especially interesting for Novices.

The average performance of those who team up with Experts and Masters is very high, but the

performance of those who team up with other Novices or Contributors are relatively lower. This

implies that the ability of Novices is very heterogeneous. The heterogeneity in participants’ ability

brings uncertainty in expected payoff in teams and these may deter participants’ team formation.
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Table 4 Summary Statistics on Team Type and Performance Outcomes

Tier/Choice Single
Team

Novice Contributor Expert Master

Novice 0.64 0.77 0.76 0.95 1.32
(0.79) (2.7) (0.74) (0.87) (0.89)

Contributor 0.61 0.83 0.95 1.07
(0.61) (0.75) (1.07) (0.76)

Expert 0.82 1.13 1.19
(0.62) (0.89) (0.81)

Master 1.03 1.43
(0.83) (0.90)

Note: Each row represents a participant’s tier and each column represents the participant’s team choice. Each
number represents the mean score for a team type, and the standard deviation is in parentheses.

4. Model
In this section, we develop a structural matching model, explicitly incorporating the incomplete

information and competition, to study the outcomes of the matching when the market is at equi-

librium. We model an agent’s team formation decision as a one-sided matching game with a large

number of individuals, and apply this model to the Kaggle competition. Our modeling approach can

be easily generalized to a broader setting where collaborations are important in order to compete

with other agents.

Below, we will formalize the model in four steps. First we describe the information set and the

payoff function of a participant when she forms team with another participant. Next, we discuss

how we model the expected monetary and non-monetary rewards. We then explain how participants

form expectations conditional on the information set. Finally, we introduce the equilibrium concept

and explain how the equilibrium can be represented by the participant’s optimal choice of whether

and with whom to form team under the rational expectations and market clearing constraints.

4.1. Model Setup and the Payoff Function

For each competition, define the set of participants in the competition as N , and the number of

participants as N . Also define the set of teams formed asM, and the number of teams asM . A team

〈i, j〉 ∈M indicates that the focal participant i forms team with a target participant j. As a special

case, 〈i,∅〉 denotes that participant i competes solo instead of teaming with another individual.

We assume that the matching outcomes, including teams that are formed and the performance

(i.e., the standardized score) of each team, come from the market equilibrium. To make the model

tractable, we made a few additional assumptions. First, we assume participants when forming teams

will negotiate how the monetary reward and team work should be divided. The agreement cannot

be broken once the team is formed. Potential issues from forming teams, including moral hazard

and resulted personal conflicts that can affect the team performance, are captured in a reduced-

form way in the model. Second, the pool of participants is treated as exogenous in the model. This
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helps us abstract away from the complicated participation problem, but in the model estimation we

approximate how the pool of participants may change in different competitions. Third, we treat each

competition as a static game, so that we can focus on the determinants of team formation within

games and ignore the strategic dynamic interactions between participants across games. Finally, we

also treat the monetary and non-monetary rewards pre-specified in the competition as exogenous.

Each participant is represented by two attributes: Ai is the true ability of the participant which

is private information, and Ri a noisy signal (i.e., tier status on Kaggle) about her ability that is

a public information. We assume Ai and Ri are discrete variables, and use A and R to represent

the number of possible types for Ai and Ri, respectively. We further use A and R to represent

the collection of abilities and signals of all participants in the competition. The informativeness of

the signal Ri is represented by the conditional probability Pr (Ai = a|Ri) for all types of abilities.

For a 6= a′, if Pr (Ai = a|Ri) is close to Pr (Ai = a′|Ri), Ri is not informative for other participants

to identify the focal participant’s true ability. However, if Pr (Ai = a|Ri) is close to one while the

probabilities for other abilities are close to zero, Ri is a very informative signal. The distribution

of signals is informative for the abilities of the participant population if, for any two participants i

and j, Pr (Ai = a|Ri) 6= Pr (Aj = a|Rj) for Ri 6=Rj. The conditional probability is also assumed

to be common knowledge.

The performance of team 〈i, j〉 is determined by the abilities Ai and Aj, denoted as Y〈i,j〉(Ai,Aj).

We assume that, first, team performance independent from the ordering of i and j, i.e.,

Y〈i,j〉(Ai,Aj) = Y〈j,i〉(Aj,Ai). Second, team performance does not depend on the abilities of partici-

pants in other teams. However, the rank of Y〈i,j〉 will depend on the performance of all teams. We use

YM to denote the collection of performances of all teams underM, and Z〈i,j〉(YM) to represent the

rank of team 〈i, j〉. For the sponsoring business, the performance of the best team, i.e., max(YM),

brings the most value as the algorithm can be applied to solve its business problem. Participants, on

the other hand, care about the ranking since it determines how much the monetary reward, denoted

by Money(Z〈i,j〉(YM, and how much the non-monetary reward (i.e., Kaggle points), denoted by

Point(Z〈i,j〉(YM, the team can earn from the competition (details are in Section 4.2).

Kaggle decides how the Kaggle points awarded to a team should split between its members, and

members negotiate by themselves how to share the monetary reward and the team work. Since the

abilities Ai and Aj are unobserved by the other team member, the sharing rule will be determined

based on the public information Ri and Rj. When the market is at equilibrium, the sharing will

also be determined by R, the distribution of signals of all participants in the competition (more

details are in Section 4.3). Because of this reason, we use γM (Ri,Rj,R) to represent i’s share of the

monetary reward. For team 〈i, j〉, the share of each member is positive and the sum of shares is equal

to one, i.e., γM (Ri,Rj,R) + γM (Rj,Ri,R) = 1. If competing solo, all of the monetary reward will
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belong to the participant, i.e., γM (Ri,∅,R) = 1, where “∅” indicates that the target participant

does not exist in team 〈i,∅〉. For the share of team work, we use τ (Ri,Rj,R) to denote the “transfer”

of workload from i to j (relative to equal share of the work). As a participant’s agreement to handle

more of the workload implies the other participant will have less work, we impose the restriction

that τ (Ri,Rj,R) + τ (Rj,Ri,R) = 0. This assumption is similar to the model in Becker (1973), in

which the transfer of the man and the woman in a marriage is sum up to zero. The transfer of a

single-member team is normalized to zero, i.e.,τ (Ri,∅,R) = 0.

Finally, there are additional benefits from team works, including the economy of scale and special-

ization in job tasks, as such the workload of each member can be reduced. There are also additional

costs, such as moral hazard and potential personal conflicts, when working as a team. Note that

these are the benefits and costs on the top of how team works can impact the performance in the

competition; such impact has been captured in Y〈i,j〉(Ai,Aj). We cannot separately identify these

additional benefits and costs from data; therefore, our model only incorporates the net benefit from

the above factors. To allow for the heterogeneity of the net benefit across teams, we assume that

it is determined by the types of the team members defined by the public signals. That is, the net

benefit is represented by a function α (Ri,Rj). To simplify the analysis we assume the function is

independent from the ordering of the abilities, i.e., α (Ri,Rj) = α (Rj,Ri). We also normalize the

net benefit of competing solo to zero, i.e., α (Ri,∅) = 0.

Combining the above components, we assume that, when the focal participant i is considering the

collaboration with the target participant j, she will form expectation of her payoff relative to all of

the other team formation options. When making the decision, her information set is (Ai,Ri,Rj,R),

which also represents the state variables in the expected payoff function. The expected payoff is the

following:

U (Ai,Ri,Rj ,R) = θMi · γM (Ri ,Rj ,R) ·E
[
Money

(
Z〈i,j〉 (YM)

)
|Ai ,Ri ,Rj ,R

]
+

θPi · γP ·E
[
Point

(
Z〈i,j 〉 (YM)

)
|Ai ,Ri ,Rj ,R

]
+ τ (Ri ,Rj ,R) +α (Ri ,Rj ) + εi,Rj

(1)

In the above function, parameters θMi and θPi represent the participant’s marginal utility for the

monetary and non-monetary reward, respectively. γP captures how Kaggle allocates team points to

each participant. As discussed in Section 3, under the original policy γP = 1/2, where 2 is the team

size; after the policy change, the new γP = 1/
√

2. Finally, the random component εi,Rj
captures

other unobserved factors that will affect the participant decision of whether and with whom she will

form team. We assume that it is the same if two target participants j and j′ share the same public

signal. That is, εi,Rj
= εi,Rj′

if Rj =Rj′ .9

9 This is based on the assumption that, other than the public signal Rj , the focal participant cannot observe other
attributes of the target participant. Therefore, she is indifferent in teaming with j or j′ if Rj = Rj′ . Relaxing this
assumption makes the matching problem more complicated without direct bearing on our main results. The same
assumption is made by Becker (1973), Choo and Siow (2006) and Chan et al. (2015).
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Under the normalization assumptions for working solo, the expected payoff function of forming a

single-member team is

U (Ai ,Ri ,∅,R) = θMi ·E
[
Money

(
Z〈i,j 〉 (YM)

)
|Ai ,Ri ,∅,R

]
+

θPi ·E
[
Point

(
Z〈i,∅〉 (YM)

)
|Ai ,Ri ,∅,R

]
+ εi,∅

(2)

The participant makes decision on which type of individuals she should team up with. Assuming

that εi,Rj
is distributed as Type-I extreme value distribution with scale parameter µ. Given a sharing

rule γM and a transfer rule τ , the probability that the participant’s optimal choice is teaming with

a participant with signal r (including single-member team with r=∅), can be calculated as:

PrM
(
Ai ,Ri , r ,R|γM , τ

)
=

exp(V (Ai ,Ri , r ,R;γM , τ)/µ)∑
r ′∈(R∪∅) exp (V (Ai ,Ri , r ′,R;γM , τ)/µ)

(3)

where the subscript “M” on the left side denotes the matching probability, and V (Ai,Ri, r,R;γM , τ)

on the right side is the expected payoff in equation (1) (or equation (2) if r = ∅) without the

random component εi,Rj
. Furthermore, Rj in the equation is replaced by r, and γM (Ri,Rj,R) and

τ (Ri,Rj,R) by γM and τ , respectively.

Note that, first of all, γM and τ are unobserved by researchers. To evaluate the choice probability

we will have to back out these variables from equilibrium conditions. Second, the expectations of

the monetary and non-monetary rewards in equations (1) and (2) are over the true abilities of the

target participant as well as that of all other participants in the competition. The focal participant

will make inference on the abilities of other participants based on the public signals,as well as their

decisions on how to form teams with other types of participants, when the market is at equilibrium.

These two issues will be discussed in Section 4.3.

4.2. Performance and Rewards

The ranking of team 〈i, j〉 depends on the performances, which are the standardized scores discussed

in the previous section, of all teams. With abilities Ai = a and Aj = a′, we specify we specify the

performance function is specified as

Y〈i,j 〉 (a,a
′) = λ′aa + ξij (4)

where λaa′ is a model parameter to be estimated representing the predicted performance of a team

with ability a and a′. By definition λaa′ = λa′a.10 The stochastic term ξij captures other unobserved

factors that affect the final performance, and is assumed to distribute as N
(
0, σ2

ξ

)
. Participants

know the distribution but not the exact value of ξij when making the team formation decisions.

10 The benefits and costs of collaborations cannot be separately identified from our data, as such λaa′ captures the
net benefit in a reduced-form way.
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The collection of performances of all teams under team structureM is YM. The expected mone-

tary and non-monetary rewards of team 〈i, j〉, as equation (1) shows, depend on the rank of Y〈i,j〉 in

YM, i.e., Z〈i,j〉(YM). Let Pr (Aj = a|Rj,Ri,R;γM , τ) be the probability that the true ability of target

participant j, whose signal is Rj, conditional on the focal participant’s signal is Ri, the collection

of signals of all participants in the competition denoted by R, and sharing rule γM and transfer

τ . This conditional probability also represents the updated belief of participant i over j’s ability,

which differs from the prior belief of j’s ability, denoted by Pr (Aj = a|Rj), that depends only on

Rj. We will specify such conditional probability or updated belief in the next sub-section.

Assume that the top P th teams in the competition will receive monetary prizes, denoted by Prizep

for the pth place. Given γM and τ , the expected monetary reward for the focal participant can be

specified as

E
[
Money

(
Z〈i,j 〉 (YM)

)
|Ai ,Ri ,Rj ,R;γM , τ

]
=

P∑
p=1

[
Prizep ×Pr

(
Z(ij ) (YM) = p

)]
=

P∑
p=1

[
Prizep ×

∑
a∈A

Pr
(
Aj = a|Rj ,Ri ,R;γM , τ

)
×Pr

(
Z〈i,j〉 (YM|Ai ,a,M) = p

)] (5)

In the above equation, the probability on the right side in the first line denotes the probability that

the rank of team 〈i, j〉 is at the pth place. This probability is the sum of the conditional probability

that Aj is equal to a specific level a multiplied by the probability that, given Ai and a as the true

abilities of the two team members and team structureM, the rank of the team is at the pth place.

This is expressed mathematically in the second line of the equation.

Similarly, the expected non-monetary reward (i.e., Kaggle points) for team 〈i, j〉 can be specified

as

E
[
Point

(
Z〈i,j 〉 (YM)

)
|Ai ,Ri ,Rj ,R;γM , τ

]
=

M∑
p=1

[
Pointp ×Pr

(
Z〈i,j 〉 (YM) = p

)]
=

M∑
p=1

[
Pointp ×

∑
a∈A

Pr
(
Aj = a|Rj ,Ri ,R;γM , τ

)
×Pr

(
Z〈i,j 〉 (YM|Ai ,a,M) = p

)] (6)

Note that the first summation on the right side of the equation is up to M , the total number of

teams. This is because under Kaggle’s policy every team will receive certain number of points.

The challenge of evaluating the expected monetary and non-monetary rewards is to compute the

probability of the order, Pr
(
Z〈i,j〉 (YM|Ai, a,M) = p

)
in equations (5) and (6). The computation

is complicated because it involves a rank order distribution. We use the asymptotic normality of

the order statistic distribution to approximate the distribution of the performance of the pth-place

team. The asymptotic distribution mimics the actual probability very well when the number of
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participants is large in the competition. Using this distribution function, we then use numerical

method to compute Pr
(
Z〈i,j〉 (YM|Ai, a,M) = p

)
. Details are in Appendix A.11

4.3. Updated Beliefs and the Market-Clearing Condition

Given signal Rj for participant j’s ability, participant i’s prior belief regarding j’s ability is

Pr (Aj = a|Rj). Suppose j agrees to collaborate with i and let her take γM share of the monetary

reward and transfer τ . We assume that i will update her belief with this new information, using the

Bayes rule as the following:

Pr
(
Aj = a|Rj ,Ri ,R; 1− γM ,−τ

)
=

PrM (a,Rj ,Ri ,R|1− γM ,−τ)×Pr (Aj = a|Rj )∑
a′∈APrM (a ′,Rj ,Ri ,R|1− γM ,−τ)×Pr (Aj = a ′|Rj )

(7)

where PrM (a,Rj,Ri,R|1− γM ,−τ) is j’s choice probability given that her true ability is a, as

defined in equation (3). Note that, since γM and τ are what i takes from the team, j will receive 1−
γM share of the monetary reward and −τ as transfer. Also, equation (7) implies rational expectation

in the updated belief because the belief is based on j’s optimal choice.

Until now the probability of i choosing a teammate with signal Rj and the resulted expected

monetary and non-monetary rewards are all conditional on a specific sharing rule γM and transfer τ

(and 1−γM and −τ for j). Researchers do not observe γM and τ . When the market is at equilibrium,

the number of participants with signal r ∈ R who wants to match with participants with signal

r′ ∈R is equal to the other way round. γM and τ have to satisfy this market-clearing condition. As

γM and τ cannot be separately identified, we normalize γM to be 1/2, and focus on solving for the

market-clearing τ . This normalization does not affect the results because, assuming that the true

sharing rule is γ̃M 6= 1/2 and the true transfer is τ̃ . One can simply set γM = 1/2, and re-specify

τ as τ̃ plus (γ̃M − 1/2) multiplied by the expected monetary reward. The choice probability will

remain unchanged.

With the normalization, let PrM(r, r′|R, τ) be the probability that a participant with signal r

chooses to collaborate with another participant with signal r′, conditional on the collection of all

participants’ signals R and transfer τ . The probability can be derived as

PrM (r , r ′|R, τ) =
∑
a∈A

PrM
(
a, r , r ′,R|γM = 1/2, τ

)
×Pr(A= a|r) (8)

where PrM(a, r, r′,R|γM = 12, τ) is defined in equation (3). The market-clearing condition states

that the transfer from the participant with signal r′ to the participant with signal r, represented by

τ(r, r′), has to satisfy the following equality:

PrM (r , r ′|R, τ (r , r ′))×PrR(r) =PrM (r ′, r |R,−τ (r , r ′))×PrR (r ′) (9)

11 In other empirical settings the payoffs for individual or firm collaborations may depend on the performance instead
of the ranking. This will make the computation of the payoffs much easier without relying on order statistics as in
rank-order tournaments. For example, when firms compete for market share, the payoff can be approximated by a
multinomial logit market share function which is a function of the performances of the focal collaboration and other
collaborations. In such case the payoff can be evaluated in an analytical way.



Chan, Chen, Wu: Collaborate to Compete
18

where PrR(r) and PrR(r′) represent the proportions of participants with signals r and r’, respec-

tively.

Substitute equation (8) into (9), and further plug equation (3) into the equation, then apply

logarithmic transformation and move terms, we can derive that

τ(r, r′) =
µ

2
· [lnPrR(r′) + ln

(∑
a

exp(V (a, r′, r,R;γM = 1/2, τ(r, r′)) + τ(r, r′)/µ)∑
r̃∈(R∪∅) exp(V (a, r′, r̃,R;γM = 1/2,−τ(r, r̃))/µ)

×Pr(A= a|r′)

)

− lnPrR(r)− ln

(∑
a

exp(V (a, r, r′,R;γM = 1/2, τ(r, r′))− τ(r, r′)/µ)∑
r̃∈(R∪∅) exp(V (a, r, r̃,R;γM = 1/2, τ(r, r̃))/µ)

×Pr(A= a|r)

)
]

(10)

This expression helps us to prove the existence of the market equilibrium, which is in the next

sub-section.

4.4. Market Equilibrium

The matching game in our model is characterized by the preference parameters {θMi , θPi , α (Ri,Rj)}

for every participant (see equations (1) and (2)), the monetary and non-monetary rewards

{Prizep, Pointp} for every rank (see equations (5) and (6)), and how the non-monetary rewards

are split, i.e.,γP in equation (1). The market is at equilibrium when the market-clearing condition

in equation (9) is satisfied for every (r, r′) pair. In addition, the probability that a participant with

ability and signal (Ai,Ri) matches with another with signal r has to be the participant’s opti-

mal choice. That is, equation (3) has to be satisfied when γM = 1/2 and τ = τ (r, r′). The market

equilibrium is represented by the choice probability PrM and transfer τ .

Let Pr∗M be a AR (R+ 1)× 1 vector that represents the collection of the choice probabilities of

all ability and signal types (including single-member team choice), and τ ∗ be a (R2 + 1)× 1 vector

that represents the collection of transfers from one to another signal type within a team (the transfer

in single-member team is fixed to zero). We can combine equations (3) and (10) into a system of

equations H : (PrM, τ )→ (PrM, τ ):{
PrM= h1(PrM, τ ),
τ = h2(PrM, τ ),

(11)

Market equilibrium (Pr∗M, τ
∗) is the solutions of the equation system H.

Proposition 1. For each competition characterized by {θMi , θPi , α (Ri,Rj)} for every participant,

{Prizep, Pointp} for every rank, and γP for every competition, market equilibrium defined as the

solution of the equation system H in equation (11) exists.

The proof is in Appendix B.
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5. Model Estimation

When estimating the model using data from Kaggle, we discretize ability into three types, i.e.,

A = {Low,Medium,High}. We use the tier status to proxy the noisy signal. That is, R =

{Novice,Contributor,Expert,Master}. Although other signals, such as a participant’s accumu-

lated Kaggle points, are available, they are highly correlated with the tier status. The tier is also

the most highlighted part when checking a participant’s profile. Therefore, it should be the most

important signal for a participant’s ability.

For model parameters, we normalize the marginal utility of the monetary reward θMi to 1, and

allow the marginal utility of the non-monetary reward θPi to differentiate based on the participant’s

tier status. That is, θP = {θPNovice, θPContributor, θPExpert, θPMaster}. Such heterogeneity captures the fact

that a participant’s need for Kaggle points may differ at different tiers. We also allow θP to change

before and after Kaggle adjusted its point allocation system. It reflects the fact that we find from

data the points a participant can earn from a competition are significantly different after the policy

change.

We allow α(Ri,Rj) in equation (1) to differ across each unique combination of (Ri,Rj), but

assume that α(Ri,Rj) = α(Rj,Ri). Consequently, there are 10 α’s to be estimated (as α’s for single-

member teams are normalized to zero). Since we do not observe the actual ability, the probability

Pr(Ai = a|Ri) in equation (7) is estimated from data. This probability is specific for every unique

combination of ability and tier; therefore, the number of probabilities is 4×3−4 = 8. As a reduced-

form way of capturing how competitions with various prize levels may attract different pools of

talents to participate, we also allow the probabilities to be different for competitions with small and

large monetary rewards.

For the team output function in equation (4), we estimate the λ for each unique combination of

(ai, aj), as well as the λ for single-member teams of each ability level. Therefore, there are 9 λ’s to

be estimated. Finally, we also estimate the variance δ2ξ and the scale parameter µ in equation (3).

5.1. Maximum Likelihood under Equilibrium Constraints

The outcomes of the matching game we observe from data include team structureM as well as the

performance Y〈i,j〉 of every team. Given a transfer τ from i to j, the probability of team formation

〈i, j〉 is

L(〈i, j〉|Ri,Rj,R, τ) = PrM(Ri,Rj|R, τ)×PrM(Rj,Ri|R,−τ)

=(
∑
a∈A

PrM(a,Ri,Rj,R|γM = 1/2, τ)×Pr(Ai = a|Ri))×

(
∑
a′∈A

PrM(a′,Rj,Ri,R|γM = 1/2,−τ)×Pr(Aj = a′|Rj))

(12)
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The equation indicates that the team will only be formed if it is optimal for both participants.12

Let φ(y,λ(a,a′), δ2ξ) be the (normal) pdf of the performance of the team when the abilities of the

participants members are a and a′, defined in equation (4). The likelihood that the team performance

is Y〈i,j〉 is

L(Y〈i,j〉|Ri,Rj,R, τ) =
∑
a∈A

∑
a′∈A

PrM(a,Ri,Rj,R|γM = 1/2, τ)·

PrM(a′,Rj,Ri,R|γM = 1/2,−τ) ·φ(Y〈i,j〉, λ(a,a′), δ2ξ)

(13)

The likelihood function we use in model estimation is the sum of the log likelihood of the observed

teams and their performance in every competition in data. That is,

l(Θ) =
∑
g

∑
〈i,j〉∈Mg

[l(〈i, j〉|Ri,Rj,R, τ) + l(Y〈i,j〉|Ri,Rj,R, τ)] (14)

where Θ denotes the set of model parameters, subscript “g” a competition and “Mg” the collection

of all teams in the competition. In addition, l(〈i, j〉|Ri,Rj,R, τ) and Y〈i,j〉|Ri,Rj,R, τ) are the log

functions of the likelihoods in equations (12) and (13), respectively.

The challenges of evaluating equation (14) are two-fold. First, τ is unobserved to researchers; it

has to be recovered from the market-clearing condition. Second, the matching probability PrM in

equations (12) and (13) comes from equation (3). Because of competition, the payoff function of

forming teams depends on how other teams in the competition are formed. This means that the

matching probability is a function of the matching probabilities of other teams in the competition,

as the first line offunction h1 in equation (11) suggests. Because of these two issues, the likelihood

function cannot be evaluated analytically.

We propose a two-level estimation procedure to tackle this problem. In the inner level, conditional

on trial parameters Θ we search for the matching probabilities and transfers (Pr∗M, τ ∗) for every

competition such that Pr∗M= h1(Pr
∗
M, τ

∗) and τ ∗= h2(Pr
∗
M, τ

∗). That is, we find (Pr∗M, τ
∗)

that satisfy the equilibrium constraints. In the outer level, we search for Θ that maximizes the

likelihood function in equation (14). The detailed algorithm is the following:

1. Start with initial value Θ0. For any trial parameters Θ,

(a) Assume initial value H(Pr0M, τ
0) . Calculate the expected payoffs, using numerical meth-

ods;

(b) Calculate (Pr′M, τ
′)=H(Pr0M, τ

0)

(c) Replace H(Pr0M, τ
0) by (Pr′M, τ

′). Repeat the above procedure until (PrM, τ ) con-

verge. They represent the market equilibrium under model parameters Θ0

12 For a single team 〈i,∅〉, the second component on the right side is fixed to 1.
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2. Calculate the likelihood function value in equation (14) under parameters Θ. Search for Θ such

that the likelihood function is maximized.

Note that Proposition 1 proves the existence but not the uniqueness of (Pr∗M, τ ∗). The potential

multiple equilibria are a concern when we estimate the model and conduct counterfactuals. During

the estimation, we test whether this is an issue by varying the starting value (Pr0M, τ 0) in the inner

level. We find that they always converge to the same (Pr∗M, τ
∗), suggesting that the equilibrium

is unique in our empirical application.

5.2. Identification

The identification of the unobserved team ability distribution (λ, δ2ξ), and the public tier to private

ability conditional distribution Pr(A|R), comes from how team score changes under different com-

binations of Ri and Rj, as equation (13) suggests. In the likelihood function, L(Y〈i,j〉) can be treated

as a latent class regression, with Pr(A|R) represents the size of latent classes.

The proportions of teams collaborated by different types of public tiers identify the net benefits

of team formation, α. Conditional on the expected Y〈i,j〉 and thus the monetary and non-monetary

rewards, the larger the proportion of teams formed by tiers 〈Ri,Rj〉 indicates the larger the value of
α〈Ri,Rj〉, relative to α〈Ri,∅〉 that is normalized to zero. The identification of preferences for Kaggle

points, θP , comes from the proportions of teams formed across types of tiers and across competitions.

If, for example, collaborations increase the points expected to win more than competing solo, a large

number of collaborations across competitions will indicate a high θP . After the policy change, the

share of Kaggle points a participant can obtain from forming teams increases, relative to competing

solo. Therefore, participants with higher θP will be more likely to form teams. This policy change

also helps the identification of the parameter.

Finally, conditional on monetary prizes and Kaggle points, the variation in the proportions of

teams formed by different types of participant tiers identifies the scale parameter µ. Suppose, for

example, as the monetary prize increases across competitions, the proportions only vary slightly.

Since the marginal utility of the monetary prize is normalized to one, the lack of variation will imply

a high value of µ.

At the inner level of the model identification, we also treat the equilibrium (Pr∗M, τ
∗) as model

parameters. The identification of these parameters comes from the equilibrium constraints, repre-

sented by equations (3) and (10).

6. Result
In this section, we first report the estimation results. Based on the results, we then use counterfac-

tuals to explore how Kaggle can increase the value for both sponsoring businesses and individual

participants on both sides, through providing better information about participants’ ability and

manipulating the competitive pressure through the point allocation policy.
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6.1. Estimation Results

Estimated marginal utilities for Kaggle points (θP ) are reported in Table 5. As the marginal utility

for the monetary prize is normalized to one, the estimates in the table represent how much a

participant is willing to pay for one Kaggle point. Because of the change in the point allocation

policy we described in Section 3, the value of Kaggle points may adjust correspondingly; therefore,

we estimate the marginal utilities before and after the policy change separately.

Table 5 Parameter Estimates of Preferences for Kaggle Points

Parameter Public Tier

Novice Contributor Expert Master

θP : before policy change 0.36 (0.11) 1.53 (0.18) 0.82 (0.05) 0.41 (0.12)
θP : after policy change 2.02 (0.04) 8.11 (0.06) 4.98 (0.26) 3.77(0.02)

Note: Numbers represent the point estimates; numbers in parentheses are the
standard errors of the point estimates.

There is an inverted-U shaped relationship between the marginal utility for points and tiers.

The marginal utility increases as participants progress from Novice to Contributor, then decreases

as they further progress to Expert and Master. The result is probably due to the way Kaggle

determines tier status. Novices are new entrants to the platform who have not participated in

any competitions. In data, more than 80% of Novices only participated in one competition. Their

marginal utility for points thus may be low. The rest 20% progress to the Contributor tier when they

participate again. They are those who self-select to continue to compete; therefore, they may have a

much higher marginal utility for points. The decreasing marginal utility for points from Contributor

to Master probably reflects that the value of gaining additional points is lower, as participants

have accumulated more points. Still, the marginal utilities of Experts and Masters are significantly

positive. Another interesting result is that marginal utilities for Kaggle points increase after the

policy change. One of the possible reasons is that, as more and more participants are attracted to

join competitions in later periods, it has become more difficult to win Kaggle points The result also

explains why collaborations have dropped after the policy change – as Kaggle points are valued

more, participants are more reluctant to form teams lest they have to split points with the others.

The results suggest that Kaggle points are very valuable for participants. Use the estimates

multiplied by the average number of points a participant wins in competitions, the average value of

Kaggle points earned in each competition is $7,600 before and $4,900 after the policy change. As a

benchmark, the expected monetary reward for an average participant is just $39. The comparison

suggests that for most participants the non-monetary payoff dominates the monetary payoff.
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Table 6 reports the estimated net benefits, on the top of gaining more Kaggle points and the

monetary reward, from forming teams (i.e., α(R,R′)) All of the estimates are significantly positive,

implying that the benefits of forming teams dominate the costs. These benefits are also higher than

the expected monetary reward for an average participant, suggesting that, in addition to Kaggle

points, the non-monetary benefits from peer collaboration are important. Furthermore, the net

benefits from teaming with individuals with high tiers are higher than that with low tiers. For

example, the benefits for an Expert from working with a Master are $407, about twice as high as

working with a Novice ($183). Such a high value may come from the benefit of learning from high

ability peers.

Table 6 Parameter Estimates of Preferences in Collaborations

Team Structure Novice Contributor Expert Master
Novice 151 (0.27) 162 (0.03) 183 (0.31) 220 (0.16)
Contributor 276 (0.05) 289 (0.05) 310 (0.04)
Expert 378 (0.32) 407 (0.04)
Master 552 (0.17)

Note: Numbers represent the point estimates; numbers in paren-
theses are the standard errors of the point estimates.

Table 7 reports the estimated conditional probability of belonging to an ability level given a

participant’s tier status (i.e., Pr(A|R)). Since competitions that offer higher prizes may attract more

talented individuals, we group the competitions in our data into low- and high-prize type, using the

average prize amount across competitions as the criterion. There are 77 low-prize and 25 high-prize

competitions, with the average prize amount about $9,000 and $76,000, respectively. A low-prize

competition attracts about 400 participants and a high-prize one attracts about 1,200 participants.

We estimate the conditional probabilities for these two types of competitions separately. Results

show that Kaggle’s tier system is in general consistent with participants’ true ability. For example,

the proportion of individuals with high ability increases from 33-38% for Novices to 90-94% for

Masters. However, the variation in abilities within each tier is very substantial, implying that tiers

are a noisy signal. This is especially true for Novices, as the proportions of individuals with low

and high ability are both large. Finally, we calculate the unconditional probabilities of each ability

type by summing up the products of the conditional probability and the size of each tier, across

all tiers. They are reported in the rows of “Total”. In comparison with small-prize competitions,

the proportion of individuals with high ability is larger in high-prize competitions while that with

low and medium ability is smaller, suggesting that high monetary rewards are able to attract more

talents.
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Table 7 Parameter Estimates for Conditional Probability

Public Type Private Type

Low Ability Medium Ability High Ability

Small Reward Games
Novice 0.41 (0.04) 0.26 (0.09) 0.33
Contributor 0.18 (0.07) 0.47 (0.12) 0.35
Expert 0.09 (0.14) 0.20 (0.13) 0.71
Master 0.03 (0.18) 0.07 (0.16) 0.90
Total 0.28 0.26 0.44

Large Reward Games
Novice 0.37 (0.09) 0.25 (0.11) 0.38
Contributor 0.24 (0.11) 0.28 (0.07) 0.48
Expert 0.06 (0.12) 0.12 (0.14) 0.82
Master 0.03 (0.21) 0.03 (0.11) 0.94
Total 0.27 0.22 0.51

Note: Numbers represent the point estimates; numbers in parentheses
are the standard errors of the point estimates; numbers in rows of
“Total” represent unconditional probability of each ability type.

Table 8 reports the estimated productivity, which is also the average performance (i.e., λ(a,a′)),

of each team combination. Estimates in the last column of the table are the productivity of single-

member teams, which can be used as the benchmark against the performance from collaborations.

There is a strong increasing productivity from low to high ability single-member teams. Comparing

the left columns with the last column, collaborations clearly help improve the team productivity. For

example, the predicted performance of a low-low (high-high) combination is 0.52 (2.12), much higher

than that when a low-ability (high-ability) participant works alone. However, there is a danger for

high-ability participants: if they work alone, the predicted performance is 1.82, higher than that

if they team up with medium- or low-ability individuals. This difference is probably due to the

division of job tasks, as such poor work from a low-ability member can have a substantial impact

on the whole performance of the team. These results imply that the lack of information regarding

the true ability of other participants can become a hurdle for high-ability individuals to form teams.

Therefore, reducing the noise in tier signals may help improve the effectiveness of collaborations, a

result we will show in the counterfactuals.

Finally, the estimated variance of the team productivity (δ2xi) is 0.53, and the scale parameter in

participants’ utility function (µ) is 1,313. Both are quite large when comparing with the predicted

team performance and average utility level respectively.

From estimation results, we could recover the transfers τ within each competition. The average

transfer τ from one to another tier across competitions between different tiers is reported in Table 9.

Lower tiers have to pay a positive transfer to higher tiers when forming teams, and the magnitude
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Table 8 Parameter Estimates for Team Abilities

Team Structure Low Ability Medium Ability High Ability Single
Low Ability 0.52 (0.02) 0.78 (0.02) 1.62 (0.09) -2.21 (0.34)
Medium Ability 0.89 (0.12) 1.77 (0.35) -1.07 (0.14)
High Ability 2.12 (0.39) 1.82 (0.17)
σ2
ξ 0.53(0.16)
µ 1313(21.7)

Note: Numbers represent the point estimates; numbers in parentheses are the
standard errors of the point estimates.

increases as the difference in tiers increases. For instance, to form team with a Master, an Expert

on average needs to pay $1,449, while a Novice needs to pay $4,231. This is because a high-ability

teammate will greatly improve the team performance, and other teammates will be benefited from

the increased monetary reward and more importantly the non-monetary rewards. Note that the

transfers are much higher than the average expected monetary rewards in competitions ($39), as

the non-monetary payoffs are much bigger than the monetary rewards.

Table 9 Average Transfer Between Participants

Paid by
To Teammate

Novice Contributor Expert Master

Novice 0 2701 3477 4231
Contributor 0 1088 3046
Expert 0 1449
Master 0

Note: Transfer for participants with the same tier is 0. Negative values in the upper triangle mean that
participants of lower tier will pay positive transfer to participants in higher tier.

Our model also allows us to recover the choice probability of participants given the transfer in

equilibrium. We find that participants of different abilities have different choice probabilities even

if they belong to the same tier. For instance, the probability of low ability Novices teaming with

another Novice is 42%, with a Master is 1%, and staying single is 43%. The probabilities for a

high-ability Novice are 6%, 4% and 88%, respectively. A high-ability Novice is more likely to stay

single, because the loss from splitting points with the other teammate is large. However, if she can

team up with another high-ability teammate, her team can have a high chance to achieve a top rank

and thus win both monetary and non-monetary rewards. Therefore, she is more likely to collaborate

with a Master.

Finally, Table 10 reports the model fit in terms of the average percentage of team types observed in

data and that predicted by our model. Overall, the predicted team formations are highly consistent

with the data pattern. The only collaboration that the model significantly under-predicts is Masters

teaming with Masters. Table 11 compares the average score across each type of teams in data and
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that predicted in our model. The numbers are again quite close with each other. The model is able

to replicate how, for example, by collaborating with a teammate of the same or different tier, a

Master is able to obtain an average score higher than competing alone. Overall, our model is able

to predict very well team formations and performances as observed in the data.

Table 10 Model Fit: Collaboration Probabilities

Tier/Choice Single
Team

Novice Contributor Expert Master

Novice 40.2% (41.6%) 15.8% (15.7%) 2.4% (3.0%) 1.1% (1.4%) 1.3% (1.4%)
Contributor 17.2% (14.7%) 1.0% (0.9%) 0.4% (0.4%) 0.2% (1.4%)
Expert 10.6% (9.5%) 0.1% (0.7%) 0.1% (0.7%)
Master 7.4% (7.6%) 2.2% (1.0%)

Note: Numbers represent percentage of team type in data; Numbers in parenthesis represent predicted
percentage of team type from estimation.

Table 11 Model Fit: Team Scores

Tier/Choice Single
Team

Novice Contributor Expert Master

Novice 0.64 (0.68) 0.77 (0.80) 0.76 (0.79) 0.95 (0.87) 1.32 (1.21)
Contributor 0.61 (0.68) 0.83 (0.81) 0.95 (0.89) 1.07 (1.16)
Expert 0.82 (0.82) 1.13 (1.01) 1.19 (1.31)
Master 1.03 (1.11) 1.43 (1.44)

Note: Numbers represent average performance for team types in data; Numbers in parenthesis represent
predicted average performance from estimation.

7. Counterfactuals

As a platform, the profit of Kaggle relies on the participation of sponsoring businesses on one side

and individual talents on the other side. Kaggle has to provide sufficient value to attract both parties.

For individual participants, the value of joining competitions is captured by the utility function. For

sponsoring businesses, they look for the best solution provided by participants for their business

problems. The maximum performance of all teams in a competition would be a good proxy for such

value. In this sub-section, we conduct counterfactuals using the estimation results to explore how

Kaggle can improve the value it offers to both parties. We focus on two type of policies that Kaggle

can implement. First, Kaggle can change the informativeness of the tier system. Second, Kaggle can

manipulate the competitive pressure by adjusting the point allocation policy. As we have discussed

above, the lack of information can negatively impact the willingness of high-ability individuals to

form teams, and that Kaggle points are of great value to participants, the counterfactual policies

we explore should have substantial impacts on Kaggle’s business.
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We use four measures to quantify the impacts: the average and maximum utility of all participants,

and the average and maximum performance of all teams, in a competition. The first two measures

center around the welfare of participants, while the latter two are directly linked to the value for

sponsoring businesses.

7.1. Informativeness of the Tier System

The first counterfactual studies the impacts of changing the informativeness of the tier system.

In current practice, Kaggle assigns tiers based on the cumulative Kaggle points a participant has

won in past competitions. This is a noisy signal, as Table 2 shows, since individuals who have

participated in more competitions are more likely to be assigned a high tier. Furthermore, past

performances may not indicate how good an individual will be if the current competition requires a

different skill set. Considering one counterfactual scenario that Kaggle only uses the number of past

competitions an individual has participated to determine the tier. The tier will be less informative

about an individual’s true ability than the current practice. In another scenario, suppose Kaggle

uses a more sophisticated method to predict the individual’s performance for each competition.

For example, Kaggle may assign more weights for past competitions that have similar tasks as

the current competition. It can also incorporate an individual’s current job, college majors, and

other relevant attributes as predictors. Doing so the tier status of the individual may vary from one

competition to another, and it will be a more informative signal about the individual’s ability in a

competition.

In the counterfactual, we assume the distributions of participants in terms of the true ability

are 1/2, 1/3, 1/6 for Low, Medium and High types, respectively. We also fix the distributions of

tiers as 1/3, 1/4, 13/60 and 1/5, for Novices, Contributors, Experts and Masters, respectively.

We assume the total number of participants is 1500 and the total money reward is $10,000, and

Kaggle’s point allocation policy is before the change. We explore three counterfactual scenarios: no

information (e.g., the practice that assigns tier based on the number of competitions an individual

has participated), low information (e.g., assigning tier based on the cumulative Kaggle points an

individual has earned) and high information (e.g., assigning tier based on the sophisticated method

discussed above). The information structure of each scenario is specified in Table 12.

For the no-information scenario, the probability of belonging to an ability type is the same across

tiers. For the low-information scenario, the probability of belonging to the low-ability type is much

higher for Novices and Contributors, while the probability of belonging to the high-ability type is

much higher for Masters. Still, there is a high chance that individuals in each tier belong to the

other ability types. For the last high-information scenario, Novices and Contributors predominantly

belong to low ability, Experts to medium ability, and Masters to high ability. Therefore, the tier

status is a more informative signal.
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Table 12 Different Information Scenarios (Pr(A|R))

Public Type No Information Low Information High Information

Low Medium High Low Medium High Low Medium High

Novice 0.50 0.33 0.17 0.67 0.25 0.08 0.83 0.13 0.04
Contributor 0.50 0.33 0.17 0.58 0.34 0.08 0.67 0.29 0.04
Expert 0.50 0.33 0.17 0.45 0.54 0.01 0.18 0.78 0.04
Master 0.50 0.33 0.17 0.17 0.25 0.58 0.08 0.25 0.67

Table 13 reports the results from the three scenarios. The first two rows show the percentage

of multi-member teams and the percentage of teams that are formed by high ability members.

The results suggest that providing better information on the true ability helps facilitate collabora-

tions and, more importantly, increase the chance that high ability participants form teams among

themselves. For the participant welfare, the average utility of participants of all types increase

from 1,341undertheno−informationscenarioto1,511 under the high-information scenario, a 12.7%

improvement. The maximum utility among all participants (who comes from a high ability individ-

ual) has improved even more by 21.4%. For team performance, the maximum performance among

all teams (who comes from a team with two high ability participants) has increased from 3.38

under the no-information scenario to 3.46 under the high-information scenario, a 2.4% improvement.

Although this increase seems small, it comes from the best performance team among a large num-

ber of participants. Improvement in such a measure is more difficult to obtain. This performance

improvement can bring a high value to the sponsoring business. For example, a small increase in

the accuracy of demand prediction can help a firm cut down inventory costs and avoid stock-outs

and thus significantly improve its profit. Finally, the average team performance has a much more

significant increase by 20.4%.

Table 13 Market Outcomes Under Different Information Structure

Scenario No Information Low Information High Information

Percentage of Multi-Member Teams 59% 65% 66%
Percentage of High-High Collaborations 6% 10% 12%
Mean Utility 1341 1492 1511
Max Utility 31350 35921 38087
Mean Performance 0.49 0.56 0.59
Max Performance 3.38 3.44 3.46

Overall, the results suggest that improving the informativeness of the tier status can bring sig-

nificant value for both sponsoring businesses and participants. This creates a win-win situation for

both sides, which is the key for the success of Kaggle’s business.
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7.2. Point Allocation

Our second counterfactual studies how the competition for the non-monetary reward, i.e., Kaggle

points, affects the participant welfare and team performances. We vary the extent of competition

by adjusting the slope of the point allocation policy. A flat slope means points are allocated more

evenly across teams, while a steep slope puts more weight on the performance ranking. We use the

average points difference between two neighboring performance ranks as the measure of the slope,

which is equivalent to the average absolute value of the gradient across the integer ranks. Under

the current policy, the slope is 204. We create a flat slope scenario by setting the slope at 22, and

another steep slope scenario with the slope at 470. We also include the scenario of equal allocation of

points across all rankings, in which the slope will be completely flat and both measures of curvature

will be 0. To make sure that the results only come from the change in the slope of the allocation

function, we fix the total points awarded to all teams in the three scenarios to 7 million. Figure 7.2

shows the point allocation slope of the 4 scenarios.

Figure 1 Point Allocation Slopes

The competitive pressure is higher in the scenarios with a steeper slope. This is because the

allocation concentrates on a few high-ranked teams at the expense of teams at lower ranks. In

Panel (A) of Figure 7.2, stepper slopes have higher concentration of points for top ranks, while
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in Panel (B), stepper slopes have less points allocated to lower ranks. When points are equally

allocated, there will be no competition (except for the monetary reward). Since the curvature of

the point allocation slopes represents the extent of competitive pressure for points, we denote the 4

scenarios by competitiveness for points, i.e., the completely flat slope as no competition, the flatter

slope as mild competition, the original slope as original competition, and the steep slope as acute

competition.

Finally, to compare the counterfactuals in Section 7.1, we also consider the three information

scenarios.

Table 14 reports the results of the four scenarios. The benchmark scenario is no competition.

When the competitive pressure rises, the probability of collaboration among high-ability partici-

pants will increase, as shown in the first two rows in each panel. With no information, for example,

the percentage of multi-member teams has increased from 1% in the no competition scenario to

68%. These are big increases, suggesting that competition significantly affects the incentive of col-

laboration. When compared with the results under the original competition scenario, as reported in

Table 13, the increase in collaborations between high-ability participants however is more moderate.

The last two rows in each panel in Table 14 report the mean and maximum performance in each

scenario. Both performance metrics are higher in the acute competition scenario. This is because

the competitive pressure for Kaggle points has increased the probability of collaborations, especially

among high-ability participants. These results suggest the importance of maintaining the compet-

itive pressure through the point allocation for creating value for sponsoring businesses. Compared

with the original point allocation policy results that are reported in Table 13, the last panel of

Table 14 however suggests that further increase the competitive pressure does not significantly

impact the maximum team performance.

For individual participants, the average utility drops from $2,916-3,106 in the mild competition

scenario to $929-1,055 in the acute competition scenario, more than a 60% decrease. However, the

expected maximum utility increases with competitive pressure, from $15,604-16,816 in no competi-

tion scenario to $65,810-73,028 in acute competition scenario. The results indicate that increasing

the competitive pressure will hurt an average participant’s welfare but improve the top performer’s

welfare. Therefore, such a policy change may negatively impact the incentive of participating in

competitions for average participants; however, it will boost the incentive for top participants.

To summarize the results from the two counterfactual exercises, we show how improving the

informativeness of the tier status helps create a win-win situation for both sponsoring businesses

and individual participants. Therefore, Kaggle should focus more on such improvement. Increas-

ing the competitive pressure by manipulating the point allocation system will boost collaboration

among participants, and increase the best performance of all teams. These will benefit sponsoring
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Table 14 Performance Measures under Different Point Allocation Policies

Point Allocation Measure Information Structure

No Information Low Information High Information

No Competition

Percentage of Multi-Member Teams 1.0% 4.6% 5.4%
Percentage of High-High Collaborations 0.6% 1.7% 2.4%
Mean Utility 3106 2908 2916
Max Utility 16816 15968 15604
Mean Performance -1.21 -1.04 -1.03
Max Performance 3.26 3.32 3.34

Mild Competition

Percentage of Multi-Member Teams 5.7% 8.6% 9.8%
Percentage of High-High Collaborations 2.1% 2.6% 2.9%
Mean Utility 2751 2833 2861
Max Utility 33418 44855 48951
Mean Performance -0.88 -0.809 -0.763
Max Performance 3.28 3.33 3.35

Acute Competition

Percentage of Multi-Member Teams 68% 75% 76%
Percentage of High-High Collaborations 6.8% 11.9% 13.5%
Mean Utility 929 1039 1055
Max Utility 65810 68819 73029
Mean Performance 0.61 0.70 0.71
Max Performance 3.39 3.44 3.46

businesses. An average participant’s payoff will decrease while the top performer’s will increase.

If the priority of the platform is to attract more participants, it should avoid excessive competi-

tion for points. If the priority is the participation of top talents and sponsoring businesses, a more

competitive point allocation system is preferred.

8. Conclusions

Collaboration is a common phenomenon within firms and across markets. Two main issues that

are important to the efficiency of collaborations have not been fully addressed in the literature.

First, potential participants in collaborations may not fully observe the ability of others. When

payoffs are tied with abilities, such uncertainty may impede the incentive of collaboration. We

develop a structural matching model that incorporates the incomplete information of participants

and use counterfactuals to show that, when the public signals (i.e., tier status) for abilities are more

informative, the incentive for collaboration and the performance of collaboration will both increase.

Second, individuals collaborate to compete against other collaborations. Our model incorporates

competition in the payoff function. Counterfactual results show that the competitive pressure in

Kaggle’s competition will boost collaboration and improve team performance.

This paper makes both methodological and substantive contributions. Methodologically, we

advance the literature by providing a general framework in modeling large scale one-to-one matching

game that involves numerous participants. By specifying the bilateral matching decision as indi-

viduals’ optimal decision, while imposing the rational expectation and market clearing constraints,
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our model captures a complicated market environment where incomplete information is prevalent,

spillover from matching exists, and transfers between collaborators are unobserved. Substantively,

we use counterfactuals to show that increasing the informativeness of signals for participants’ true

ability and the competitive pressure in a rank-order tournament will improve the incentive for collab-

orations, especially among high ability participants. This will benefit the team performance. More

informative signal will also increase the payoff for participants. High competitive pressure, however,

will benefit top participants but harm the payoff of general participants. Whether a crowdsourcing

platform such as Kaggle should use a steeper point allocation system thus depends on what is its

priority.

We have made a few simplifying assumptions to keep the model tractable. Future research should

relax these assumptions to further understand the underlying mechanism that drives collaborations.

First, we model collaborations as one-to-one matching. When the collaboration involves more partic-

ipants, the problem will become more complicated. Recent research that studies network formation

(e.g., Ho and Lee 2017 and Ghili 2018) offers an alternative way to model such type of collabora-

tions. It also models transfer or price through a Nash-in-Nash bargaining framework. Second, our

model treats entry of participants as exogenous. Future research can study how the entry decision

may affect collaborations, if more granular data such as click streams are readily available. Last but

not least, future research should further investigate how important economic factors, such as the

economy of scale, complementarity of skills, and moral hazard, separately affect the incentive and

outcomes of collaborations. Currently they are combined in a reduced-form way in our model.
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Appendix
A. Calculation of Team Performance Rank

We now derive the probability of team performance rank for a team Pr(Z〈i,j〉(YM|Ai,Aj)).The rank

of a team is determined by its own performance and the performances of the other teams. Since

the performance of a team is driven by the true ability of team members, we first need to calculate

team structure M in terms of teams’ true ability. We define a team type t by the true ability of

team members, t= 〈a,a′〉 for multi-member teams and t= 〈a,∅〉 for single-member teams. Given A

types of true ability for participant, we have a total of T = A(A+1)

2
+ 2A unique team types.

GivenM, we could calculate the percentage of team type PrT (t) with the following equation.

PrT (t) =
∑
r∈R

∑
r′∈R

PrR(r) ·PrR(r′) ·Pr(a|r, r′) ·Pr(a′|r′, r). (A.1)

where t= 〈a,a′〉, PrR(r) and PrR(r′) represent the proportion of participants with signal r and r′,

Pr(a|r, r′) represents the updated probability of a participant’s true ability a conditional on her

own signal r and her choice of teammate of signal r′, as defined in equation (7) in section 4.3. The

team structureM could then be characterized by the propotions of team type PrT (t) for all t∈ T .

In section 4.2, we assume the performance of a team with type t = 〈a,a′〉, Y (t) follows normal

distribution N(λt, σ
2
ξ). The performance of one team Y ∈ YM follows a mixture normal distribution,

with each of the underlying component to be distributed as N(λt, σ
2
ξ)and the probability of each

component to be PrT (t). Based on the property of mixed normal distribution, the cumulative

distribution function of team performance Y underM is defined as

FY (y) =
∑
t∈T

PrT (t)Φ(y,λt, σ
2
ξ). (A.2)

and the probability density function of Y is defined as

fY (y) =
∑
t∈T

PrT (t)φ(y,λt, σ
2
ξ) (A.3)

We use Y(p) to represent the pth order statistics of Y and PrT (p, t|Y(p) = y) to represent the

probability that pth order statistic is from a particular team type t conditional on the pth order

statistics of Y equals y, the value of PrT (p, t|Y(p) = y) could be derive using Bayesian Rule

PrT (p, t|Y(p) = y) =
φ(y|λt, σ2

ξ)PrT (t)∑
t′∈T φ(y|λt′ , σ2

ξ)PrT (t′)
(A.4)

Then we integrate PrT (p, t|Y(p) = y) over the distribution of order statistics Y(p) and get the

unconditional probability that pth order statistic is from a particular team type t, PrT (p, t) as

PrT (p, t) =

∫
PrT (p, t|Y(p) = y)fY(p)(y)dy (A.5)
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Finally, the probability that a specific team 〈i, j〉 with type t = 〈Ai,Aj〉 ranks the pth,

Pr(Z〈i,j〉(YM|Ai,Aj) = p) is equal to the probability that pth order statistic is from team type t

divided by the number of teams with the same team type t, which is the total number of teams M

times the propotion of team type t, i.e.,

Pr(Z〈i,j〉(YM|Ai,Aj) = p) =
PrT (p, t= 〈Ai,Aj〉)
M ×PrT (t= 〈Ai,Aj〉)

(A.6)

The challenge to calculate the this probability comes from the complicated form of the exact

distribution of the order statistics Y(p) for mixture normal distribution. We utilize the property of

the asymptotic distribution of the order statistic function for mixture normal distribution to help

alleviate the computational burden. Specifically,

Y(p) ∼N
(
F−1Y (

p

M
),

p
M

(1− p
M

)

M [fY (F−1Y ( p
M

))]2

)
. (A.7)

where p
M

is the specific quantile that defines the pth order, F and f are culmulative distribution

and density function of Y defined in equations (A.2) and (A.3). We could simulate values from the

this asymptotic distribution and compute the numerical integration of equation (A.5).

Specifically, the procedure of the expected probability calculation is outlined as follows:

1. Simulate S1 random numbers ν1 from the stand normal distribution, and simulate S2 random

numbers ν2 from the standard normal distribution.

2. Given the model parameters λ,σξ, compute the proportion of team types PrT (t) in equa-

tion (A.1), then seperately scale PrT (t)×S1 samples of ν1 to be νt = λt + σξν1 for each team type

t. This gives us the mixture normal distribution of team ability according to the team structure.

3. Rank-order the above values νt, and numerically compute the quantile function F−1Y .

4. For each rank p, compute the following:

(a) Compute the mean and variance of the asymptotic normal distribution specified in equa-

tion (A.7), and scale the S2 generated standard normal random numbers ν2 to νp with the calculated

mean and variance of Y(p)

(b) Use the simulated random numbers νp for each team type t to compute the numerical

integration in equation (A.5)

(c) Compute the probability for team performance rank in equation (A.6) for each team type

t.

B. Proof: Existence of Equilibrium

As expained in the paper, the equilibrium (Pr∗M, τ
∗) is characterized by the fixed point of the system

of equations H : (PrM, τ)→ (PrM, τ). So the existence of equilibrium is equivalent to the existence

of fixed point for H. The proof is done in two steps. First, we show that in equilibrium transfer is
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finite so we could restrict the domain of H, (PrM, τ) to be a compact and convex subset of the

Euclidean space. Second, we show H mapped from (PrM, τ) onto itself is continuous. Therefore, we

can use Brouwer’s fixed point theorm on H to prove the existence of fixed point.

Proof. Because PrM is matching probability for participant of R signals and A true abilities

to participants of R signals, the coordinates of PrM is a vector in a vector space of R ×R × A

dimension. τ is the transfer between participants with different signals. The coordinates of τ is

a vector in R×(R+1)

2
vector space. Because we assume both R and A are finite, the coordinates

of (PrM, τ) is a vector in (R×R×A+ R×(R+1)

2
) dimension vector space. (PrM, τ) is a point in

Euclidean space of dimension (R×R×A+ R×(R+1)

2
).

Suppose the set of τ is unbounded, ∃r, r′, s.t. τ(r, r′) = +∞, τ(r′, r) =−∞. ∀a,a′, PrM(a, r, r′|τ) =

1, PrM(a′, r′, r|τ) = 0. ∀Pr(A|R), PrM(r, r′|τ) = 1, PrM(r′, r) = 0, market equilibrium constraint

is not satisfied. Thus in equilibrium the set of τ is bounded and there exists a finite number B, s.t.

each coordinate of τ is in the finite interval [−B,B]. The set of PrM is bounded and closed because

each coordinate of PrM is a probability that lies in the unit interval of [0,1]. We restrict D, the

domain of H to be a closed and bounded subset of Euclidean space. Because each coordinate of

(PrM, τ) is in a closed and bounded interval, the convex combination of two points in D is still in D,

i.e D is convex. Based on the specification in the paper, each member function of H is continuous,

and thus H is continuous. ∀(PrM, τ)∈D, H(PrM, τ)∈D, because h1 yields a mapping from a set

of probabilities on to itself and h2 comes from the market equilibrium constraint that controls the

boundary of τ . Thus H is a continuous function from a compact and convex set D onto itself.

By Brouwer fixed point theorem, the fixed point (Pr∗M, τ
∗) exists.
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